Patents by Inventor Frank K. Baker

Frank K. Baker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9129996
    Abstract: A method of making a semiconductor device includes depositing a layer of polysilicon in a non-volatile memory (NVM) region and a logic region of a substrate. The layer of polysilicon is patterned into a gate in the NVM region while the layer of polysilicon remains in the logic region. A memory cell is formed including the gate in the NVM region while the layer of polysilicon remains in the logic region. The layer of polysilicon in the logic region is removed and the substrate is implanted to form a well region in the logic region after the memory cell is formed. A layer of gate material is deposited in the logic region. The layer of gate material is patterned into a logic gate in the logic region.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: September 8, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Frank K. Baker, Jr., Cheong Min Hong
  • Patent number: 9118008
    Abstract: A resistive random access memory (ReRAM) cell comprising a first conductive electrode and a dielectric storage material layer over the first conductive electrode. The dielectric storage material layer is conducive to the formation of conductive filaments during the application of a filament forming voltage to the cell. The cell includes a second conductive electrode over the dielectric storage material layer and a layer of conductive nanoclusters (911, 1211) including a plurality of nanoclusters in contact with the dielectric storage material layer and in contact with the first conductive electrode or the second conductive electrode.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: August 25, 2015
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Feng Zhou, Frank K. Baker, Jr., Ko-Min Chang, Cheong Min Hong
  • Patent number: 9114980
    Abstract: A resistive random access memory (ReRAM) cell, comprising a first conductive electrode and a dielectric storage material layer over the first conductive electrode. The dielectric storage material layer is conducive to the formation of conductive filaments during the application of a filament forming voltage to the cell. The cell includes a second conductive electrode over the dielectric storage material layer and an interface region comprising a plurality of interspersed field focusing features that are not photo-lithographically defined. The interface region is located between the first conductive electrode and the dielectric storage material layer or between the dielectric storage material layer and the second conductive electrode.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: August 25, 2015
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Feng Zhou, Frank K. Baker, Jr., Ko-Min Chang, Cheong Min Hong
  • Patent number: 9111865
    Abstract: An oxide-containing layer is formed directly on a semiconductor layer in an NVM region, and a first partial layer of a first material is formed over the oxide-containing layer in the NVM region. A first high-k dielectric layer is formed directly on the semiconductor layer in a logic region. A first conductive layer is formed over the first dielectric layer in the logic region. A second partial layer of the first material is formed directly on the first partial layer in the NVM region and over the first conductive layer in the logic region. A logic device is formed in the logic region. An NVM cell is formed in the NVM region, wherein the first and second partial layer together are used to form one of a charge storage layer if the cell is a floating gate cell or a select gate if the cell is a split gate cell.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: August 18, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mehul D. Shroff, Mark D. Hall, Frank K. Baker, Jr.
  • Patent number: 9087913
    Abstract: A thermally-grown oxygen-containing layer is formed over a control gate in an NVM region, and a high-k dielectric layer and barrier layer are formed in a logic region. A polysilicon layer is formed over the oxygen-containing layer and barrier layer and is planarized. A first masking layer is formed over the polysilicon layer and control gate defining a select gate location laterally adjacent the control gate. A second masking layer is formed defining a logic gate location. Exposed portions of the polysilicon layer are removed such that a select gate remains at the select gate location and a polysilicon portion remains at the logic gate location. A dielectric layer is formed around the select and control gates and polysilicon portion. The polysilicon portion is removed to result in an opening at the logic gate location which exposes the barrier layer.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: July 21, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mark D. Hall, Mehul D. Shroff, Frank K. Baker, Jr.
  • Publication number: 20150194439
    Abstract: A process integration is disclosed for fabricating complete, planar non-volatile memory (NVM) cells (110) prior to the formation of high-k metal gate electrodes for CMOS transistors (212, 213) using a planarized dielectric layer (26) and protective mask (28) to enable use of a gate-last HKMG CMOS process flow without interfering with the operation or reliability of the NVM cells.
    Type: Application
    Filed: March 18, 2015
    Publication date: July 9, 2015
    Inventors: Jon D. Cheek, Frank K. Baker, Jr.
  • Patent number: 9054220
    Abstract: A process integration is disclosed for fabricating complete, planar non-volatile memory (NVM) cells (110) prior to the formation of high-k metal gate electrodes for CMOS transistors (212, 213) using a planarized dielectric layer (26) and protective mask (28) to enable use of a gate-last HKMG CMOS process flow without interfering with the operation or reliability of the NVM cells.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: June 9, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jon D. Cheek, Frank K. Baker, Jr.
  • Publication number: 20150072489
    Abstract: A method of making a semiconductor device includes depositing a layer of polysilicon in a non-volatile memory (NVM) region and a logic region of a substrate. The layer of polysilicon is patterned into a gate in the NVM region while the layer of polysilicon remains in the logic region. A memory cell is formed including the gate in the NVM region while the layer of polysilicon remains in the logic region. The layer of polysilicon in the logic region is removed and the substrate is implanted to form a well region in the logic region after the memory cell is formed. A layer of gate material is deposited in the logic region. The layer of gate material is patterned into a logic gate in the logic region.
    Type: Application
    Filed: September 10, 2013
    Publication date: March 12, 2015
    Inventors: FRANK K. BAKER, JR., Cheong Min Hong
  • Patent number: 8951863
    Abstract: A method of forming an NVM cell and a logic transistor uses a semiconductor substrate. In an NVM region, a polysilicon select gate of the NVM cell is formed over a first thermally-grown oxygen-containing layer, and in a logic region, a work-function-setting material is formed over a high-k dielectric and a polysilicon dummy gate is formed over the work-function-setting material. Source/drains, a sidewall spacer, and silicided regions of the logic transistor are formed after the first thermally-grown oxygen-containing layer is formed. The polysilicon dummy gate is replaced by a metal gate. The logic transistor is protected while the NVM cell is then formed including forming a charge storage region.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: February 10, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mark D. Hall, Frank K. Baker, Jr., Mehul D. Shroff
  • Publication number: 20140295639
    Abstract: A resistive random access memory (ReRAM) cell comprising a first conductive electrode and a dielectric storage material layer over the first conductive electrode. The dielectric storage material layer is conducive to the formation of conductive filaments during the application of a filament forming voltage to the cell. The cell includes a second conductive electrode over the dielectric storage material layer and a layer of conductive nanoclusters (911, 1211) including a plurality of nanoclusters in contact with the dielectric storage material layer and in contact with the first conductive electrode or the second conductive electrode.
    Type: Application
    Filed: June 11, 2014
    Publication date: October 2, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: FENG ZHOU, Frank K. Baker, JR., Ko-Min Chang, Cheong Min Hong
  • Publication number: 20140269008
    Abstract: A memory cell includes a first bidirectional resistive memory element (BRME), and a second BRME, a first storage node, and a second storage node . A resistive memory write to the cell includes placing the first BRME and the second BRME in complementary resistive states indicative of the value being written. During a subsequent restoration operation, the value as written in the first BRME and second BRME is written to the first storage node and the second storage node while a wordline connected to the memory cell is deasserted.
    Type: Application
    Filed: May 28, 2014
    Publication date: September 18, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventor: FRANK K. BAKER, JR.
  • Publication number: 20140225176
    Abstract: A process integration is disclosed for fabricating complete, planar non-volatile memory (NVM) cells (110) prior to the formation of high-k metal gate electrodes for CMOS transistors (212, 213) using a planarized dielectric layer (26) and protective mask (28) to enable use of a gate-last HKMG CMOS process flow without interfering with the operation or reliability of the NVM cells.
    Type: Application
    Filed: February 8, 2013
    Publication date: August 14, 2014
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Jon D. Cheek, Frank K. Baker, JR.
  • Patent number: 8779405
    Abstract: A resistive random access memory (ReRAM) cell comprising a first conductive electrode and a dielectric storage material layer over the first conductive electrode. The dielectric storage material layer is conducive to the formation of conductive filaments during the application of a filament forming voltage to the cell. The cell includes a second conductive electrode over the dielectric storage material layer and a layer of conductive nanoclusters (911, 1211) including a plurality of nanoclusters in contact with the dielectric storage material layer and in contact with the first conductive electrode or the second conductive electrode.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: July 15, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Feng Zhou, Frank K. Baker, Jr., Ko-Min Chang, Cheong Min Hong
  • Patent number: 8741719
    Abstract: A thermally-grown oxygen-containing gate dielectric and select gate are formed in an NVM region. A high-k gate dielectric, barrier layer, and dummy gate are formed in a logic region. The barrier layer may include a work-function-setting material. A first dielectric layer is formed in the NVM and logic regions which surrounds the select gate and dummy gate. The first dielectric layer is removed from the NVM region and protected in the logic region. A charge storage layer is formed over the select gate. The dummy gate is removed, resulting in an opening. A gate layer is formed over the charge storage layer in the NVM region and within the opening in the logic region, wherein the gate layer within the opening together with the barrier layer form a logic gate in the logic region, and the gate layer is patterned to form a control gate in the NVM region.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: June 3, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mark D. Hall, Frank K. Baker, Jr., Mehul D. Shroff
  • Patent number: 8716089
    Abstract: A thermal oxide is formed in an NVM region and a logic region. A polysilicon layer is formed over the thermal oxide and patterned to form a dummy gate and a select gate in the logic and NVM regions, respectively. A first dielectric layer is formed in the NVM and logic regions which surrounds the select gate and dummy gate. The first dielectric layer is removed from the NVM region and protected in the logic region. A charge storage layer is formed over the select gate. The dummy gate is removed, forming an opening. A second dielectric layer is formed over the select gate and within the opening, and a gate layer is formed over the second dielectric layer and within the opening, wherein the gate layer within the opening forms a logic gate and the gate layer is patterned to form a control gate in the NVM region.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: May 6, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mark D. Hall, Frank K. Baker, Jr., Mehul D. Shroff
  • Publication number: 20140120713
    Abstract: An oxide-containing layer is formed directly on a semiconductor layer in an NVM region, and a first partial layer of a first material is formed over the oxide-containing layer in the NVM region. A first high-k dielectric layer is formed directly on the semiconductor layer in a logic region. A first conductive layer is formed over the first dielectric layer in the logic region. A second partial layer of the first material is formed directly on the first partial layer in the NVM region and over the first conductive layer in the logic region. A logic device is formed in the logic region. An NVM cell is formed in the NVM region, wherein the first and second partial layer together are used to form one of a charge storage layer if the cell is a floating gate cell or a select gate if the cell is a split gate cell.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 1, 2014
    Inventors: MEHUL D. SHROFF, MARK D. HALL, Frank K. Baker, JR.
  • Patent number: 8713406
    Abstract: A method of erasing a non-volatile semiconductor memory device comprising determining a number of bit cells that failed to erase verify during an erase operation. The bit cells are included in a subset of bit cells in an array of bit cells. The method further comprises determining whether an Error Correction Code (ECC) correction has been previously performed for the subset of bit cells. The erase operation is considered successful if the number of bit cells that failed to erase verify after a predetermined number of erase pulses is below a threshold number and the ECC correction has not been performed for the subset of bit cells.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: April 29, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Fuchen Mu, Frank K. Baker, Jr., Chen He
  • Patent number: 8669158
    Abstract: A method of forming an NVM cell and a logic transistor uses a semiconductor substrate. A polysilicon select gate of the NVM cell is formed over a first thermally-grown oxygen-containing layer in an NVM region and a polysilicon dummy gate is formed over a second thermally-grown oxygen-containing layer in a logic region. Source/drains, a sidewall spacer, and silicided regions of the logic transistor are formed after the first and second thermally-grown oxygen-containing layers are formed. The second thermally-grown oxygen-containing layer and the dummy gate are replaced by a metal gate and a high-k dielectric. The logic transistor is protected while the NVM cell is then formed including forming a charge storage layer.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: March 11, 2014
    Inventors: Mark D. Hall, Frank K. Baker, Jr., Mehul D. Shroff
  • Publication number: 20130346680
    Abstract: A memory system comprises a memory controller, an address RAM coupled to the memory controller, and a non-volatile memory coupled to the memory controller. The non-volatile memory has an address portion and a data portion. The address portion of the non-volatile memory provides data portion addresses and data portion addresses of valid data to the memory controller. The memory controller loads the data portion addresses and stores them in the address RAM at locations defined by the data portion addresses of valid data into the address RAM. The memory controller uses the data portion addresses, and locations of data blocks within the address RAM, to locate the data blocks within the data portion of non-volatile memory.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 26, 2013
    Inventors: Ross S. Scouller, Frank K. Baker, JR., Ronald J. Syzdek
  • Publication number: 20130320284
    Abstract: A resistive random access memory (ReRAM) cell, comprising a first conductive electrode and a dielectric storage material layer over the first conductive electrode. The dielectric storage material layer is conducive to the formation of conductive filaments during the application of a filament forming voltage to the cell. The cell includes a second conductive electrode over the dielectric storage material layer and an interface region comprising a plurality of interspersed field focusing features that are not photo-lithographically defined. The interface region is located between the first conductive electrode and the dielectric storage material layer or between the dielectric storage material layer and the second conductive electrode.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 5, 2013
    Inventors: Feng Zhou, Frank K. Baker, JR., Ko-Min Chang, Cheong Min Hong