Patents by Inventor Frank Wolter

Frank Wolter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10586793
    Abstract: A semiconductor device includes a plurality of forward conducting insulated-gate bipolar transistor cells configured to conduct a current in a forward operating mode of the semiconductor device and to block a current in a reverse operating mode of the semiconductor device. The semiconductor device also includes a plurality of reverse conducting insulated-gate bipolar transistor cells configured to conduct a current both in the forward operating mode and in the reverse operating mode. A corresponding method for operating a semiconductor device is also disclosed.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: March 10, 2020
    Assignee: Infineon Technologies AG
    Inventors: Tomas Manuel Reiter, Frank Wolter
  • Publication number: 20190319123
    Abstract: A semiconductor device is described in which a conductive channel is present along an active gate trench of the device when a gate potential is at an on-voltage, whereas no conductive channel is present along an inactive gate trench of the device for the same gate potential condition.
    Type: Application
    Filed: June 28, 2019
    Publication date: October 17, 2019
    Inventors: Maria Cotorogea, Frank Wolter, Hans-Joachim Schulze, Franz-Josef Niedernostheide, Yvonne Gawlina-Schmidl
  • Publication number: 20190273488
    Abstract: An integrated circuit comprises a power switch comprising a current path and a current sense node; and a temperature sense circuit internally coupled between the current path and the current sense node.
    Type: Application
    Filed: March 5, 2018
    Publication date: September 5, 2019
    Inventors: Tomas Manuel Reiter, Georg Schinner, Frank Wolter
  • Patent number: 10388776
    Abstract: A semiconductor device includes: a drift region formed in a semiconductor substrate; a body region above the drift region; an active gate trench extending from a first main surface and into the body region and including a first electrode coupled to a gate potential; a source region formed in the body region adjacent to the gate trench and coupled to a source potential; a first body trench extending from the first main surface and into the body region and including a second electrode coupled to the source potential; and an inactive gate trench extending from the first main surface and into the body region and including a third electrode coupled to the gate potential. A conductive channel is present along the active gate trench when the gate potential is at an on-voltage, whereas no conductive channel is present along the inactive gate trench for the same gate potential condition.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: August 20, 2019
    Assignee: Infineon Technologies AG
    Inventors: Maria Cotorogea, Frank Wolter, Hans-Joachim Schulze, Franz-Josef Niedernostheide, Yvonne Gawlina-Schmidl
  • Publication number: 20190103480
    Abstract: A semiconductor device includes: a drift region formed in a semiconductor substrate; a body region above the drift region; an active gate trench extending from a first main surface and into the body region and including a first electrode coupled to a gate potential; a source region formed in the body region adjacent to the gate trench and coupled to a source potential; a first body trench extending from the first main surface and into the body region and including a second electrode coupled to the source potential; and an inactive gate trench extending from the first main surface and into the body region and including a third electrode coupled to the gate potential. A conductive channel is present along the active gate trench when the gate potential is at an on-voltage, whereas no conductive channel is present along the inactive gate trench for the same gate potential condition.
    Type: Application
    Filed: November 13, 2018
    Publication date: April 4, 2019
    Inventors: Maria Cotorogea, Frank Wolter, Hans-Joachim Schulze, Franz-Josef Niedernostheide, Yvonne Gawlina-Schmidl
  • Patent number: 10199291
    Abstract: A semiconductor arrangement is presented.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: February 5, 2019
    Assignee: Infineon Technologies AG
    Inventors: Andreas Riegler, Angelika Koprowski, Mathias Plappert, Frank Wolter
  • Publication number: 20190025132
    Abstract: A semiconductor die includes a single power transistor or power diode, a temperature sense diode formed close enough to the single power transistor or power diode to measure an accurate temperature. The temperature sense diode comprises first and second diodes or strings of diodes. A separate integrated circuit is operable to measure first and second voltage drops of both the first and second diodes or strings of diodes using same magnitude currents, and estimate the temperature of the single power transistor or power diode based on the difference between the first and second forward voltage drop measurements. An overall pn junction area of the first diode or string of first diodes is different from an overall pn junction area of the second diode or string of second diodes.
    Type: Application
    Filed: September 26, 2018
    Publication date: January 24, 2019
    Inventors: Andreas Kiep, Holger Ruething, Frank Wolter
  • Patent number: 10132696
    Abstract: A semiconductor die includes a discrete semiconductor device and at least one diode. The temperature of the discrete semiconductor device is determined by measuring a first forward voltage drop of the at least one diode under a first test condition, measuring a second forward voltage drop of the at least one diode under a second test condition and estimating the temperature of the discrete semiconductor device based on the difference between the first and second forward voltage drop measurements.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: November 20, 2018
    Assignee: Infineon Technologies AG
    Inventors: Andreas Kiep, Holger Ruething, Frank Wolter
  • Patent number: 10134885
    Abstract: A semiconductor substrate having a first main surface and a transistor cell includes a drift region, a body region between the drift region and the first main surface, an active trench at the first main surface extending into the drift region, a gate insulating layer at sidewalls and a bottom side of the active trench, a gate conductive layer in the active trench, a source region in the body region, and adjacent to the active trench, a body trench at the first main surface extending into the drift region, the body trench being adjacent to the body region and to the drift region, an insulating layer at sidewalls and at a bottom side of the body trench, the insulating layer being asymmetric with respect to an axis extending perpendicular to the first main surface at a center of the body trench, and a conductive layer in the body trench.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: November 20, 2018
    Assignee: Infineon Technologies AG
    Inventors: Maria Cotorogea, Frank Wolter, Hans-Joachim Schulze, Franz-Josef Niedernostheide, Yvonne Gawlina-Schmidl
  • Publication number: 20180138169
    Abstract: A semiconductor device includes a plurality of forward conducting insulated-gate bipolar transistor cells configured to conduct a current in a forward operating mode of the semiconductor device and to block a current in a reverse operating mode of the semiconductor device. The semiconductor device also includes a plurality of reverse conducting insulated-gate bipolar transistor cells configured to conduct a current both in the forward operating mode and in the reverse operating mode. A corresponding method for operating a semiconductor device is also disclosed.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 17, 2018
    Inventors: Tomas Manuel Reiter, Frank Wolter
  • Publication number: 20180114830
    Abstract: A power semiconductor device includes a semiconductor body coupled to first and second load terminals and including a drift region with dopants of a first conductivity type. An active region has at least one power cell extending at least partially into the semiconductor body, is electrically connected with the first load terminal and includes a part of the drift region. Each power cell includes a section of the drift region and is configured to conduct a load current between the terminals and to block a blocking voltage applied between the terminals. A chip edge laterally terminates the semiconductor body. A non-active termination structure arranged in between the chip edge and active region includes an ohmic layer. The ohmic layer is arranged above a surface of the semiconductor body, forms an ohmic connection between electrical potentials of the first and second load terminals, and is laterally structured along the ohmic connection.
    Type: Application
    Filed: October 24, 2017
    Publication date: April 26, 2018
    Inventors: Erich Griebl, Frank Wolter, Andreas Moser, Manfred Pfaffenlehner
  • Publication number: 20170352602
    Abstract: A semiconductor arrangement is presented.
    Type: Application
    Filed: August 22, 2017
    Publication date: December 7, 2017
    Inventors: Andreas Riegler, Angelika Koprowski, Mathias Plappert, Frank Wolter
  • Patent number: 9793184
    Abstract: A semiconductor arrangement is presented.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: October 17, 2017
    Assignee: Infineon Technologies AG
    Inventors: Andreas Riegler, Angelika Koprowski, Mathias Plappert, Frank Wolter
  • Publication number: 20170250271
    Abstract: A semiconductor substrate having a first main surface and a transistor cell includes a drift region, a body region between the drift region and the first main surface, an active trench at the first main surface extending into the drift region, a gate insulating layer at sidewalls and a bottom side of the active trench, a gate conductive layer in the active trench, a source region in the body region, and adjacent to the active trench, a body trench at the first main surface extending into the drift region, the body trench being adjacent to the body region and to the drift region, an insulating layer at sidewalls and at a bottom side of the body trench, the insulating layer being asymmetric with respect to an axis extending perpendicular to the first main surface at a center of the body trench, and a conductive layer in the body trench.
    Type: Application
    Filed: May 12, 2017
    Publication date: August 31, 2017
    Inventors: Maria Cotorogea, Frank Wolter, Hans-Joachim Schulze, Franz-Josef Niedernostheide, Yvonne Gawlina-Schmidl
  • Patent number: 9680005
    Abstract: A semiconductor substrate having a first main surface and a transistor cell includes a drift region, a body region between the drift region and the first main surface, an active trench at the first main surface extending into the drift region, a gate insulating layer at sidewalls and a bottom side of the active trench, a gate conductive layer in the active trench, a source region in the body region, and adjacent to the active trench, a body trench at the first main surface extending into the drift region, the body trench being adjacent to the body region and to the drift region, an insulating layer at sidewalls and at a bottom side of the body trench, the insulating layer being asymmetric with respect to an axis extending perpendicular to the first main surface at a center of the body trench, and a conductive layer in the body trench.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: June 13, 2017
    Assignee: Infineon Technologies AG
    Inventors: Maria Cotorogea, Frank Wolter, Hans-Joachim Schulze, Franz-Josef Niedernostheide, Yvonne Gawlina-Schmidl
  • Patent number: 9581425
    Abstract: Sensor having a primary coil, two secondary coils as well as an evaluator. An excitation signal may be applied to the primary coil. An output signal depending on a position of a coupling element may be induced in each secondary coil. An evaluator is configured to evaluate the output signals in order to evaluate a phase offset between the output signals. Further, the evaluator is configured to provide a sensor output signal indicating the position or change in position of the coupling element.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: February 28, 2017
    Assignee: Hahn-Schickard-Gesellschaft für angewandte Forschung e.V.
    Inventors: André Buelau, Karl-Peter Fritz, Frank Wolter
  • Patent number: 9478613
    Abstract: A semiconductor system for a current sensor in a power semiconductor includes: on a substrate, a multiple arrangement of transistor cells having an insulated gate electrode, whose emitter terminals are connected in a first region via a first conductive layer to at least one output terminal and whose emitter terminals are connected in a second region via a second conductive layer to at least one sensor terminal, which is situated outside of a first cell region boundary, which encloses the transistor cells of the first region and the second region, a trench structure belonging to the first cell region boundary being developed between the transistor cells of the second region and the sensor terminal.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: October 25, 2016
    Assignee: Robert Bosch GmbH
    Inventors: Christian Pluntke, Timm Hoehr, Thomas Jacke, Frank Wolter, Holger Ruething, Guenther Koffler
  • Publication number: 20160268177
    Abstract: A semiconductor arrangement is presented.
    Type: Application
    Filed: March 7, 2016
    Publication date: September 15, 2016
    Inventors: Andreas Riegler, Angelika Koprowski, Mathias Plappert, Frank Wolter
  • Publication number: 20160011058
    Abstract: A semiconductor die includes a discrete semiconductor device and at least one diode. The temperature of the discrete semiconductor device is determined by measuring a first forward voltage drop of the at least one diode under a first test condition, measuring a second forward voltage drop of the at least one diode under a second test condition and estimating the temperature of the discrete semiconductor device based on the difference between the first and second forward voltage drop measurements.
    Type: Application
    Filed: July 11, 2014
    Publication date: January 14, 2016
    Inventors: Andreas Kiep, Holger Ruething, Frank Wolter
  • Publication number: 20150349116
    Abstract: A semiconductor substrate having a first main surface and a transistor cell includes a drift region, a body region between the drift region and the first main surface, an active trench at the first main surface extending into the drift region, a gate insulating layer at sidewalls and a bottom side of the active trench, a gate conductive layer in the active trench, a source region in the body region, and adjacent to the active trench, a body trench at the first main surface extending into the drift region, the body trench being adjacent to the body region and to the drift region, an insulating layer at sidewalls and at a bottom side of the body trench, the insulating layer being asymmetric with respect to an axis extending perpendicular to the first main surface at a center of the body trench, and a conductive layer in the body trench.
    Type: Application
    Filed: August 12, 2015
    Publication date: December 3, 2015
    Inventors: Maria Cotorogea, Frank Wolter, Hans-Joachim Schulze, Franz-Josef Niedernostheide, Yvonne Gawlina-Schmidl