Patents by Inventor Fred D. Fishburn

Fred D. Fishburn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7205227
    Abstract: The invention includes methods for forming electrical connections associated with semiconductor constructions. A semiconductor substrate is provided which has a conductive line thereover, and which has at least two diffusion regions adjacent the conductive line. A patterned etch stop is formed over the diffusion regions. The patterned etch stop has a pair of openings extending through it, with the openings being along a row substantially parallel to an axis of the line. An insulative material is formed over the etch stop. The insulative material is exposed to an etch to form a trench within the insulative material, and to extend the openings from the etch stop to the diffusion regions. At least a portion of the trench is directly over the openings and extends along the axis of the line. An electrically conductive material is formed within the openings and within the trench.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: April 17, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Luan C. Tran, Fred D. Fishburn
  • Patent number: 7202127
    Abstract: A plurality of capacitor electrode openings is formed within capacitor electrode-forming material. A first set of the openings is formed to a depth which is greater within the capacitor electrode-forming material than is a second set of the openings. Conductive first capacitor electrode material is formed therein. A sacrificial retaining structure is formed elevationally over both the first capacitor electrode material and the capacitor electrode-forming material, leaving some of the capacitor electrode-forming material exposed. With the retaining structure in place, at least some of the capacitor electrode-forming material is etched from the substrate effective to expose outer sidewall surfaces of the first capacitor electrode material.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: April 10, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Brett W. Busch, Fred D. Fishburn, James Rominger
  • Patent number: 7153778
    Abstract: A patterned mask can be formed as follows. A first patterned photoresist is formed over a masking layer and utilized during a first etch into the masking layer. The first etch extends to a depth in the masking layer that is less than entirely through the masking layer. A second patterned photoresist is subsequently formed over the masking layer and utilized during a second etch into the masking layer. The combined first and second etches form openings extending entirely through the masking layer and thus form the masking layer into the patterned mask. The patterned mask can be utilized to form a pattern in a substrate underlying the mask. The pattern formed in the substrate can correspond to an array of capacitor container openings. Capacitor structure can be formed within the openings. The capacitor structures can be incorporated within a DRAM array.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: December 26, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Brett W. Busch, Luan C. Tran, Ardavan Niroomand, Fred D. Fishburn, Yoshiki Hishiro, Ulrich C. Boettiger, Richard D. Holscher
  • Patent number: 7135401
    Abstract: The invention includes methods for forming electrical connections associated with semiconductor constructions. A semiconductor substrate is provided which has a conductive line thereover, and which has at least two diffusion regions adjacent the conductive line. A patterned etch stop is formed over the diffusion regions. The patterned etch stop has a pair of openings extending through it, with the openings being along a row substantially parallel to an axis of the line. An insulative material is formed over the etch stop. The insulative material is exposed to an etch to form a trench within the insulative material, and to extend the openings from the etch stop to the diffusion regions. At least a portion of the trench is directly over the openings and extends along the axis of the line. An electrically conductive material is formed within the openings and within the trench.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: November 14, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Luan C. Tran, Fred D. Fishburn
  • Patent number: 7067378
    Abstract: The invention includes methods of fabricating multiple sets of field effect transistors. In one implementation, an etch stop layer is formed over an insulative capping layer which is formed over a conductive gate layer formed over a substrate. The etch stop layer, the insulative capping layer, and the conductive gate layer are patterned and etched to form a first set of conductive gate constructions over the substrate. A dielectric material is formed and planarized over the first set of gate constructions. Thereafter, the insulative capping layer and the conductive gate layer are patterned and etched to form a second set of conductive gate constructions over the substrate. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: June 27, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Fred D. Fishburn, Martin Ceredig Roberts
  • Patent number: 7060570
    Abstract: The invention includes methods of fabricating multiple sets of field effect transistors. In one implementation, an etch stop layer is formed over an insulative capping layer which is formed over a conductive gate layer formed over a substrate. The etch stop layer, the insulative capping layer, and the conductive gate layer are patterned and etched to form a first set of conductive gate constructions over the substrate. A dielectric material is formed and planarized over the first set of gate constructions. Thereafter, the insulative capping layer and the conductive gate layer are patterned and etched to form a second set of conductive gate constructions over the substrate. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: June 13, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Fred D. Fishburn, Martin Ceredig Roberts
  • Patent number: 7060569
    Abstract: The invention includes methods of fabricating multiple sets of field effect transistors. In one implementation, an etch stop layer is formed over an insulative capping layer which is formed over a conductive gate layer formed over a substrate. The etch stop layer, the insulative capping layer, and the conductive gate layer are patterned and etched to form a first set of conductive gate constructions over the substrate. A dielectric material is formed and planarized over the first set of gate constructions. Thereafter, the insulative capping layer and the conductive gate layer are patterned and etched to form a second set of conductive gate constructions over the substrate. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: June 13, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Fred D. Fishburn, Martin Ceredig Roberts
  • Patent number: 7005379
    Abstract: Electroless plating can be utilized to form electrical interconnects associated with semiconductor substrates. For instance, a semiconductor substrate can be formed to have a dummy structure thereover with a surface suitable for electroless plating, and to also have a digit line thereover having about the same height as the dummy structure. A layer can be formed over the dummy structure and digit line, and openings can be formed through the layer to the upper surfaces of the dummy structure and digit line. Subsequently, a conductive material can be electroless plated within the openings to form electrical contacts within the openings. The opening extending to the dummy structure can pass through a capacitor electrode, and accordingly the conductive material formed within such opening can be utilized to form electrical contact to the capacitor electrode.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: February 28, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Nishant Sinha, Dinesh Chopra, Fred D. Fishburn
  • Patent number: 6927135
    Abstract: The invention includes methods of fabricating multiple sets of field effect transistors. In one implementation, an etch stop layer is formed over an insulative capping layer which is formed over a conductive gate layer formed over a substrate. The etch stop layer, the insulative capping layer, and the conductive gate layer are patterned and etched to form a first set of conductive gate constructions over the substrate. A dielectric material is formed and planarized over the first set of gate constructions. Thereafter, the insulative capping layer and the conductive gate layer are patterned and etched to form a second set of conductive gate constructions over the substrate. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: August 9, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Fred D. Fishburn, Martin Ceredig Roberts
  • Publication number: 20040121548
    Abstract: The invention includes methods of fabricating multiple sets of field effect transistors. In one implementation, an etch stop layer is formed over an insulative capping layer which is formed over a conductive gate layer formed over a substrate. The etch stop layer, the insulative capping layer, and the conductive gate layer are patterned and etched to form a first set of conductive gate constructions over the substrate. A dielectric material is formed and planarized over the first set of gate constructions. Thereafter, the insulative capping layer and the conductive gate layer are patterned and etched to form a second set of conductive gate constructions over the substrate. Other aspects and implementations are contemplated.
    Type: Application
    Filed: December 18, 2002
    Publication date: June 24, 2004
    Inventors: Fred D. Fishburn, Martin Ceredig Roberts
  • Patent number: 5972796
    Abstract: A method for etching a semiconductor device (10) having BARC layer (22) and nitride layer (20) includes etching BARC layer (22) until reaching a first set point in the fabrication reaction chamber and then etching nitride layer (20) in-situ the fabrication reaction chamber immediately following etching BARC layer (22).
    Type: Grant
    Filed: December 10, 1997
    Date of Patent: October 26, 1999
    Assignee: Texas Instruments Incorporated
    Inventors: Ming Yang, Masahiro Kaida, Tom Lassister, Fred D. Fishburn
  • Patent number: 5252506
    Abstract: A method is disclosed for preventing formation of undesirable polysilicon word line gate filaments in integrated circuit devices such as VLSI dynamic random access memories employing field plate isolation. Before the word lines are processed, an oxide layer is formed in the field plate openings beneath sidewalls of nitride along the edges of the field plate openings. The oxide layer partially fills an undercut area beneath a dip out of the sidewall of nitride. The dip out of the sidewall of nitride is removed. The removal of the dip out and the partial filling of the undercut area reduces the possibility of polysilicon word line filaments from forming around the edge of the field plate openings in the undercut area when the word lines are later added. A field plate isolated memory device is also disclosed wherein along the edges of the field plate openings, the partially filling oxide layer and the sidewall nitride layer are approximately coincident.
    Type: Grant
    Filed: May 5, 1992
    Date of Patent: October 12, 1993
    Assignee: Texas Instruments Incorporated
    Inventors: Duane E. Carter, William R. McKee, Gishi Chung, Fred D. Fishburn