Patents by Inventor Frederick T Chen

Frederick T Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8691478
    Abstract: An attenuated phase shift mask (AttPSM) is fabricated with a set of fully transmitting regions, some parts adjacent phase-shifting regions with a first reduced transmission and first phase shift near 180 degrees, and remaining parts adjacent phase-shifting regions with a second transmission higher than the first transmission and second phase shift lower than the first phase shift.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: April 8, 2014
    Assignee: Industrial Technology Research Institute
    Inventor: Frederick T. Chen
  • Publication number: 20140077149
    Abstract: A resistance memory cell including a variable resistance layer is provided. The variable resistance layer includes at least one dominant resistance layer and at least one auxiliary resistance layer. The dominant resistance layer(s) and the auxiliary resistance layer(s) in totality form a closed ion exchange system, the exchanged ions are comparably mobile in each of the dominant resistance layer(s) and the auxiliary resistance layer(s), and the maximum resistance of the at least one dominant resistance layer is higher than that of the at least one auxiliary resistance layer.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Frederick T. Chen, Heng-Yuan Lee, Yu-Sheng Chen, Wei-Su Chen, Tai-Yuan Wu, Pang-Hsu Chen
  • Publication number: 20140072902
    Abstract: An attenuated phase shift mask (AttPSM) is fabricated with a set of fully transmitting regions, some parts adjacent phase-shifting regions with a first reduced transmission and first phase shift near 180 degrees, and remaining parts adjacent phase-shifting regions with a second transmission higher than the first transmission and second phase shift lower than the first phase shift.
    Type: Application
    Filed: September 10, 2012
    Publication date: March 13, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventor: Frederick T. Chen
  • Publication number: 20140048762
    Abstract: A phase-change memory element with an electrically isolated conductor is provided. The phase-change memory element includes: a first electrode and a second electrode; a phase-change material layer electrically connected to the first electrode and the second electrode; and at least two electrically isolated conductors, disposed between the first electrode and the second electrode, directly contacting the phase-change material layers.
    Type: Application
    Filed: October 24, 2013
    Publication date: February 20, 2014
    Applicant: Higgs Opl. Capital LLC
    Inventors: Frederick T. CHEN, Ming-Jinn TSAI
  • Patent number: 8642985
    Abstract: A memory cell includes a memory element, a current-limiting element electrically coupled to the memory element, and a high-selection-ratio element electrically coupled to the current-limiting element. The memory element is configured to store data as a resistance state. The current-limiting element is a voltage-controlled resistor (VCR) having a resistance that decreases when a voltage applied thereto increases. The high-selection-ratio element has a first resistance that is small when a voltage applied to the memory cell is approximately equal to a selection voltage of the memory cell, and has a second resistance that is substantially larger than the first resistance when the voltage applied to the memory cell is approximately equal to one-half of the selection voltage.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: February 4, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Frederick T. Chen, Heng-Yuan Lee, Yu-Sheng Chen
  • Patent number: 8624218
    Abstract: The disclosure provides a non-volatile memory structure and a method for fabricating the same. The non-volatile memory structure includes a first contact connected to a first transistor. A second contact is connected to a second transistor. A resistance-changing memory material pattern covers and contacts the second contact but not the first contact. A top electrode contacts both the resistance-changing memory material pattern and the first contact. An area of the resistance-changing memory material pattern is substantially larger than an area of its interface with the second contact.
    Type: Grant
    Filed: January 2, 2012
    Date of Patent: January 7, 2014
    Assignee: Industrial Technology Research Institute
    Inventor: Frederick T Chen
  • Patent number: 8604457
    Abstract: A phase-change memory element with an electrically isolated conductor is provided. The phase-change memory element includes: a first electrode and a second electrode; a phase-change material layer electrically connected to the first electrode and the second electrode; and at least two electrically isolated conductors, disposed between the first electrode and the second electrode, directly contacting the phase-change material layers.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: December 10, 2013
    Assignee: Higgs Opl. Capital LLC
    Inventors: Frederick T Chen, Ming-Jinn Tsai
  • Publication number: 20130320289
    Abstract: A resistance random access memory including a first electrode layer, a second electrode layer, and a stacked structure is provided. The stacked structure includes a HfZrON layer and a ZrON layer and is located between the first electrode layer and the second electrode layer. In addition, the disclosure further provides a method of fabricating a resistance random access memory.
    Type: Application
    Filed: September 13, 2012
    Publication date: December 5, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Wei-Su Chen, Tai-Yuan Wu, Frederick T. Chen, Pang-Hsu Chen
  • Publication number: 20130168631
    Abstract: The disclosure provides a non-volatile memory structure and a method for fabricating the same. The non-volatile memory structure includes a first contact connected to a first transistor. A second contact is connected to a second transistor. A resistance-changing memory material pattern covers and contacts the second contact but not the first contact. A top electrode contacts both the resistance-changing memory material pattern and the first contact. An area of the resistance-changing memory material pattern is substantially larger than an area of its interface with the second contact.
    Type: Application
    Filed: January 2, 2012
    Publication date: July 4, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventor: Frederick T. Chen
  • Publication number: 20130170278
    Abstract: A resistive random access memory (RRAM) cell including a first electrode, a second electrode, and a plurality of repeated sets of layers is provided. Each of the sets of layers includes a resistance-changing layer, a barrier layer, and an ionic exchange layer between the resistance-changing layer and the barrier layer, wherein a thickness of each of the resistance-changing layer, the barrier layer and the ionic exchange layer exceeds a Fermi wavelength, and the thickness each of the resistance-changing layer and ionic exchange layer are less than an electron mean free path. Further, a RRAM module including the aforesaid RRAM cell and a switch is also provided.
    Type: Application
    Filed: December 28, 2011
    Publication date: July 4, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Frederick T. Chen, Heng-Yuan Lee, Yu-Sheng Chen
  • Patent number: 8426838
    Abstract: A phase-change memory element with side-wall contacts is disclosed, which has a bottom electrode. A non-metallic layer is formed on the electrode, exposing the periphery of the top surface of the electrode. A first electrical contact is on the non-metallic layer to connect the electrode. A dielectric layer is on and covering the first electrical contact. A second electrical contact is on the dielectric layer. An opening is to pass through the second electrical contact, the dielectric layer, and the first electrical contact and preferably separated from the electrode by the non-metallic layer. A phase-change material is to occupy one portion of the opening, wherein the first and second electrical contacts interface the phase-change material at the side-walls of the phase-change material. A second non-metallic layer may be formed on the second electrical contact. A top electrode contacts the top surface of the outstanding terminal of the second electrical contact.
    Type: Grant
    Filed: November 27, 2008
    Date of Patent: April 23, 2013
    Assignee: Higgs Opl. Capital LLC
    Inventor: Frederick T Chen
  • Publication number: 20130087757
    Abstract: A method of manufacturing a resistive memory device is provided. A bottom electrode and a cup-shaped electrode connected to the bottom electrode are formed in an insulating layer. A cover layer extends along a first direction is formed and covers a first area surrounded by the cup-shaped electrode and exposes a second area and a third area surrounded by the cup-shaped electrode. A sacrificial layer is formed above the insulating layer. A stacked layer extends along a second direction and covers the second area surrounded by the cup-shaped electrode and a portion of the corresponding cover layer is formed. A conductive spacer material layer is formed on the stacked layer and the sacrificial layer. By using the sacrificial layer as an etch stop layer, the conductive spacer material layer is etched to form a conductive spacer at the sidewall of the stacked layer.
    Type: Application
    Filed: December 28, 2011
    Publication date: April 11, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Wei-Su Chen, Frederick T. Chen, Shan-Yi Yang, Peng-Sheng Chen
  • Publication number: 20130082229
    Abstract: A mixed ionic-electronic conduction (MIEC) memory cell including a mixed ionic-electronic conductor containing dopants therein, a heater disposed adjacent to the mixed ionic-electronic conductor, a pair of first electrodes electrically connected to the mixed ionic-electronic conductor, and at least one pair of second electrodes electrically connected to the mixed ionic-electronic conductor is provided. The pair of first electrodes drive the dopants in the mixed ionic-electronic conductor to drift along a first direction when the mixed ionic-electronic conductor is heated by the heater. The pair of second electrodes locally modify a distribution of the dopants along a second direction when the mixed ionic-electronic conductor is heated by the heater, and the first direction is different from the second direction.
    Type: Application
    Filed: March 8, 2012
    Publication date: April 4, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventor: Frederick T. Chen
  • Publication number: 20130001494
    Abstract: A memory cell includes a memory element, a current-limiting element electrically coupled to the memory element, and a high-selection-ratio element electrically coupled to the current-limiting element. The memory element is configured to store data as a resistance state. The current-limiting element is a voltage-controlled resistor (VCR) having a resistance that decreases when a voltage applied thereto increases. The high-selection-ratio element has a first resistance that is small when a voltage applied to the memory cell is approximately equal to a selection voltage of the memory cell, and has a second resistance that is substantially larger than the first resistance when the voltage applied to the memory cell is approximately equal to one-half of the selection voltage.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 3, 2013
    Inventors: Frederick T. Chen, Heng-Yuan Lee, Yu-Sheng Chen
  • Publication number: 20120243346
    Abstract: A control method for at least one memory cell. The memory cell includes a transistor and a resistor. The resistor is connected to the transistor in series between a first node and a second node. In a programming mode, the memory cell is programmed. When it is determined that the memory cell has been successfully programmed, impedance of the memory cell is in a first state. When it is determined that the memory cell has not been successfully programmed, a specific action is executed to reset the memory cell. The impedance of the memory cell is in a second state after the step resetting the memory cell. The impedance of the memory cell in the second state is higher than that of the memory cell in the first state.
    Type: Application
    Filed: June 5, 2012
    Publication date: September 27, 2012
    Applicant: Industrial Technology Research Institute
    Inventors: Yu-Sheng CHEN, Heng-Yuan LEE, Yen-Ya HSU, Pang-Shiu CHEN, Ching-Chih HSU, Frederick T. CHEN
  • Patent number: 8198620
    Abstract: A resistance switching memory is introduced herein. The resistance switching memory includes a highly-insulating or resistance-switching material formed to cover the sidewall of a patterned metal line, and extended alongside a dielectric layer sidewall to further contact a portion of the top surface of the lower electrode. The other part of the top surface of the lower electrode is covered by an insulating layer between the top electrode and the lower electrode. An oxygen gettering metal layer in the lower electrode occupies a substantial central part of the top surface of the lower electrode and is partially covered by the highly-insulating or resistance-switching material. A switching area is naturally very well confined to the substantial central part of the oxygen gettering metal layer of the lower electrode.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: June 12, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Frederick T. Chen, Ming-Jinn Tsai, Wei-Su Chen, Heng-Yuan Lee
  • Patent number: 8184491
    Abstract: Methods for reading a memory cell are provided. The method for reading a memory cell includes applying a first read pulse to a memory cell, heating the memory cell to a first temperature and obtaining a first read data. The first read data is converted to a first digital data. The first digital data is stored in a shift register. A second read pulse is applied to the memory cell, heating the memory cell to a second temperature and obtaining a second read data. The second read data is converted to a second digital data. The second digital data is stored in the shift register. A ratio of the first digital data and the second digital data is calculated, obtaining a quotient. The quotient is converted to an analog value. A log amplifier circuit takes the log of the analog value, representing an activation energy state.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: May 22, 2012
    Assignee: Industrial Technology Research Institute
    Inventor: Frederick T Chen
  • Publication number: 20120020140
    Abstract: A resistive memory cell is described, including a first electrode, a high-resistance ferroelectric material layer and a second electrode. The ferroelectric material layer has a first interface with the first electrode and has a second interface with the second electrode, wherein the second interface is not parallel with the first interface. A method of operating the resistive memory cell is also described, including applying between the first electrode and the second electrode a series of voltages, which has positive polarity and negative polarity alternately and has descending absolute values, to form in the ferroelectric material layer at least one domain wall with low resistance.
    Type: Application
    Filed: July 20, 2010
    Publication date: January 26, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventor: Frederick T. Chen
  • Patent number: 7964862
    Abstract: Phase change memory devices and methods for manufacturing the same are provided. An exemplary embodiment of a phase change memory device includes a first electrode disposed in a first dielectric layer. A second dielectric layer is disposed over the first dielectric layer and the first electrode. A phase change material layer disposed in the second dielectric layer to electrically contact the first electrode. A third dielectric layer is disposed over the second dielectric layer. A second electrode is disposed in the third dielectric layer to electrically connect the phase change material layer and at least one gap disposed in the first dielectric layer or the second dielectric layer to thereby isolate portions of the phase change material layer and portions of the first or second dielectric layer adjacent thereto.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: June 21, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Frederick T Chen, Yen Chuo, Hong-Hui Hsu, Jyi-Tyan Yeh, Ming-Jinn Tsai
  • Publication number: 20110140067
    Abstract: A resistance switching memory is introduced herein. The resistance switching memory includes a highly-insulating or resistance-switching material formed to cover the sidewall of a patterned metal line, and extended alongside a dielectric layer sidewall to further contact a portion of the top surface of the lower electrode. The other part of the top surface of the lower electrode is covered by an insulating layer between the top electrode and the lower electrode. An oxygen gettering metal layer in the lower electrode occupies a substantial central part of the top surface of the lower electrode and is partially covered by the highly-insulating or resistance-switching material. A switching area is naturally very well confined to the substantial central part of the oxygen gettering metal layer of the lower electrode.
    Type: Application
    Filed: December 14, 2009
    Publication date: June 16, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Frederick T. Chen, Ming-Jinn Tsai, Wei-Su Chen, Heng-Yuan Lee