Patents by Inventor Fredrick B. Jenne
Fredrick B. Jenne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12048162Abstract: An embodiment of a method of integration of a non-volatile memory device into a logic MOS flow is described. Generally, the method includes: forming a pad dielectric layer of a MOS device above a first region of a substrate; forming a channel of the memory device from a thin film of semiconducting material overlying a surface above a second region of the substrate, the channel connecting a source and drain of the memory device; forming a patterned dielectric stack overlying the channel above the second region, the patterned dielectric stack comprising a tunnel layer, a charge-trapping layer, and a sacrificial top layer; simultaneously removing the sacrificial top layer from the second region of the substrate, and the pad dielectric layer from the first region of the substrate; and simultaneously forming a gate dielectric layer above the first region of the substrate and a blocking dielectric layer above the charge-trapping layer.Type: GrantFiled: January 30, 2023Date of Patent: July 23, 2024Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.Inventors: Krishnaswamy Ramkumar, Bo Jin, Fredrick B. Jenne
-
Publication number: 20230209830Abstract: An embodiment of a method of integration of a non-volatile memory device into a logic MOS flow is described. Generally, the method includes: forming a pad dielectric layer of a MOS device above a first region of a substrate; forming a channel of the memory device from a thin film of semiconducting material overlying a surface above a second region of the substrate, the channel connecting a source and drain of the memory device; forming a patterned dielectric stack overlying the channel above the second region, the patterned dielectric stack comprising a tunnel layer, a charge-trapping layer, and a sacrificial top layer; simultaneously removing the sacrificial top layer from the second region of the substrate, and the pad dielectric layer from the first region of the substrate; and simultaneously forming a gate dielectric layer above the first region of the substrate and a blocking dielectric layer above the charge-trapping layer.Type: ApplicationFiled: January 30, 2023Publication date: June 29, 2023Inventors: Krishnaswamy Ramkumar, Bo Jin, Fredrick B. Jenne
-
Publication number: 20230074163Abstract: A method of scaling a nonvolatile trapped-charge memory device and the device made thereby is provided. In an embodiment, the method includes forming a channel region including polysilicon electrically connecting a source region and a drain region in a substrate. A tunneling layer is formed on the substrate over the channel region by oxidizing the substrate to form an oxide film and nitridizing the oxide film. A multi-layer charge trapping layer including an oxygen-rich first layer and an oxygen-lean second layer is formed on the tunneling layer, and a blocking layer deposited on the multi-layer charge trapping layer. In one embodiment, the method further includes a dilute wet oxidation to densify a deposited blocking oxide and to oxidize a portion of the oxygen-lean second layer.Type: ApplicationFiled: October 20, 2022Publication date: March 9, 2023Inventors: Fredrick B Jenne, Sagy Charel Levy, Krishnaswamy Ramkumar
-
Patent number: 11569254Abstract: An embodiment of a method of integration of a non-volatile memory device into a logic MOS flow is described. Generally, the method includes: forming a pad dielectric layer of a MOS device above a first region of a substrate; forming a channel of the memory device from a thin film of semiconducting material overlying a surface above a second region of the substrate, the channel connecting a source and drain of the memory device; forming a patterned dielectric stack overlying the channel above the second region, the patterned dielectric stack comprising a tunnel layer, a charge-trapping layer, and a sacrificial top layer; simultaneously removing the sacrificial top layer from the second region of the substrate, and the pad dielectric layer from the first region of the substrate; and simultaneously forming a gate dielectric layer above the first region of the substrate and a blocking dielectric layer above the charge-trapping layer.Type: GrantFiled: June 29, 2020Date of Patent: January 31, 2023Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.Inventors: Krishnaswamy Ramkumar, Bo Jin, Fredrick B. Jenne
-
Publication number: 20220173216Abstract: A semiconductor device and method of manufacturing the same are provided. In one embodiment, method includes forming a first oxide layer over a substrate, forming a silicon-rich, oxygen-rich, oxynitride layer on the first oxide layer, forming a silicon-rich, nitrogen-rich, and oxygen-lean nitride layer over the oxynitride layer, and forming a second oxide layer on the nitride layer. Generally, the nitride layer includes a majority of charge traps distributed in the oxynitride layer and the nitride layer. Optionally, the method further includes forming a middle oxide layer between the oxynitride layer and the nitride layer. Other embodiments are also described.Type: ApplicationFiled: February 18, 2022Publication date: June 2, 2022Inventors: Fredrick B. Jenne, Krishnaswamy Ramkumar
-
Patent number: 11257912Abstract: A semiconductor device and method of manufacturing the same are provided. In one embodiment, method includes forming a first oxide layer over a substrate, forming a silicon-rich, oxygen-rich, oxynitride layer on the first oxide layer, forming a silicon-rich, nitrogen-rich, and oxygen-lean nitride layer over the oxynitride layer, and forming a second oxide layer on the nitride layer. Generally, the nitride layer includes a majority of charge traps distributed in the oxynitride layer and the nitride layer. Optionally, the method further includes forming a middle oxide layer between the oxynitride layer and the nitride layer. Other embodiments are also described.Type: GrantFiled: September 28, 2020Date of Patent: February 22, 2022Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.Inventors: Fredrick B. Jenne, Krishnaswamy Ramkumar
-
Publication number: 20210188629Abstract: An embodiment of a method of integration of a non-volatile memory device into a logic MOS flow is described. Generally, the method includes: forming a pad dielectric layer of a MOS device above a first region of a substrate; forming a channel of the memory device from a thin film of semiconducting material overlying a surface above a second region of the substrate, the channel connecting a source and drain of the memory device; forming a patterned dielectric stack overlying the channel above the second region, the patterned dielectric stack comprising a tunnel layer, a charge-trapping layer, and a sacrificial top layer; simultaneously removing the sacrificial top layer from the second region of the substrate, and the pad dielectric layer from the first region of the substrate; and simultaneously forming a gate dielectric layer above the first region of the substrate and a blocking dielectric layer above the charge-trapping layer.Type: ApplicationFiled: June 29, 2020Publication date: June 24, 2021Inventors: Krishnaswamy Ramkumar, Bo Jin, Fredrick B. Jenne
-
Publication number: 20210104402Abstract: A method of scaling a nonvolatile trapped-charge memory device and the device made thereby is provided. In an embodiment, the method includes forming a channel region including polysilicon electrically connecting a source region and a drain region in a substrate. A tunneling layer is formed on the substrate over the channel region by oxidizing the substrate to form an oxide film and nitridizing the oxide film. A multi-layer charge trapping layer including an oxygen-rich first layer and an oxygen-lean second layer is formed on the tunneling layer, and a blocking layer deposited on the multi-layer charge trapping layer. In one embodiment, the method further includes a dilute wet oxidation to densify a deposited blocking oxide and to oxidize a portion of the oxygen-lean second layer.Type: ApplicationFiled: June 29, 2020Publication date: April 8, 2021Inventors: Fredrick B. Jenne, Sagy Charel Levy, Krishnaswamy Ramkumar
-
Publication number: 20210074822Abstract: A semiconductor device and method of manufacturing the same are provided. In one embodiment, method includes forming a first oxide layer over a substrate, forming a silicon-rich, oxygen-rich, oxynitride layer on the first oxide layer, forming a silicon-rich, nitrogen-rich, and oxygen-lean nitride layer over the oxynitride layer, and forming a second oxide layer on the nitride layer. Generally, the nitride layer includes a majority of charge traps distributed in the oxynitride layer and the nitride layer. Optionally, the method further includes forming a middle oxide layer between the oxynitride layer and the nitride layer. Other embodiments are also described.Type: ApplicationFiled: September 28, 2020Publication date: March 11, 2021Inventors: Fredrick B. Jenne, Krishnaswamy Ramkumar
-
Patent number: 10790364Abstract: A semiconductor device and method of manufacturing the same are provided. In one embodiment, method includes forming a first oxide layer over a substrate, forming a silicon-rich, oxygen-rich, oxynitride layer on the first oxide layer, forming a silicon-rich, nitrogen-rich, and oxygen-lean nitride layer over the oxynitride layer, and forming a second oxide layer on the nitride layer. Generally, the nitride layer includes a majority of charge traps distributed in the oxynitride layer and the nitride layer. Optionally, the method further includes forming a middle oxide layer between the oxynitride layer and the nitride layer. Other embodiments are also described.Type: GrantFiled: January 4, 2019Date of Patent: September 29, 2020Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.Inventors: Fredrick B. Jenne, Krishnaswamy Ramkumar
-
Patent number: 10700083Abstract: An embodiment of a method of integration of a non-volatile memory device into a logic MOS flow is described. Generally, the method includes: forming a pad dielectric layer of a MOS device above a first region of a substrate; forming a channel of the memory device from a thin film of semiconducting material overlying a surface above a second region of the substrate, the channel connecting a source and drain of the memory device; forming a patterned dielectric stack overlying the channel above the second region, the patterned dielectric stack comprising a tunnel layer, a charge-trapping layer, and a sacrificial top layer; simultaneously removing the sacrificial top layer from the second region of the substrate, and the pad dielectric layer from the first region of the substrate; and simultaneously forming a gate dielectric layer above the first region of the substrate and a blocking dielectric layer above the charge-trapping layer.Type: GrantFiled: August 11, 2015Date of Patent: June 30, 2020Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.Inventors: Krishnaswamy Ramkumar, Bo Jin, Fredrick B. Jenne
-
Publication number: 20190198329Abstract: A semiconductor device and method of manufacturing the same are provided. In one embodiment, method includes forming a first oxide layer over a substrate, forming a silicon-rich, oxygen-rich, oxynitride layer on the first oxide layer, forming a silicon-rich, nitrogen-rich, and oxygen-lean nitride layer over the oxynitride layer, and forming a second oxide layer on the nitride layer. Generally, the nitride layer includes a majority of charge traps distributed in the oxynitride layer and the nitride layer. Optionally, the method further includes forming a middle oxide layer between the oxynitride layer and the nitride layer. Other embodiments are also described.Type: ApplicationFiled: January 4, 2019Publication date: June 27, 2019Applicant: Cypress Semiconductor CorporationInventors: Fredrick B. Jenne, Krishnaswamy Ramkumar
-
Patent number: 10199229Abstract: A semiconductor device and method of manufacturing the same are provided. In one embodiment, method includes forming a first oxide layer over a substrate, forming a silicon-rich, oxygen-rich, oxynitride layer on the first oxide layer, forming a silicon-rich, nitrogen-rich, and oxygen-lean nitride layer over the oxynitride layer, and forming a second oxide layer on the nitride layer. Generally, the nitride layer includes a majority of charge traps distributed in the oxynitride layer and the nitride layer. Optionally, the method further includes forming a middle oxide layer between the oxynitride layer and the nitride layer. Other embodiments are also described.Type: GrantFiled: July 28, 2017Date of Patent: February 5, 2019Assignee: Cypress Semiconductor CorporationInventors: Fredrick B. Jenne, Krishnaswamy Ramkumar
-
Publication number: 20180351003Abstract: A method of scaling a nonvolatile trapped-charge memory device and the device made thereby is provided. In an embodiment, the method includes forming a channel region including polysilicon electrically connecting a source region and a drain region in a substrate. A tunneling layer is formed on the substrate over the channel region by oxidizing the substrate to form an oxide film and nitridizing the oxide film. A multi-layer charge trapping layer including an oxygen-rich first layer and an oxygen-lean second layer is formed on the tunneling layer, and a blocking layer deposited on the multi-layer charge trapping layer. In one embodiment, the method further includes a dilute wet oxidation to densify a deposited blocking oxide and to oxidize a portion of the oxygen-lean second layer.Type: ApplicationFiled: May 24, 2018Publication date: December 6, 2018Applicant: Cypress Semiconductor CorporationInventors: Fredrick B. Jenne, Sagy Charel Levy, Krishnaswamy Ramkumar
-
Patent number: 10032517Abstract: A system including a memory architecture is described. In one embodiment, the memory architecture includes an array of non-volatile memory cells, a first independently controlled voltage generation circuit, a plurality of register bits to store programmable values used by the independently controlled voltage generation circuit and a control circuit coupled to the first independently controlled voltage generation circuit. The first independently controlled voltage generation circuit is coupled to supply a positive voltage to the array during program and erase operations so that a magnitude of the positive voltage is applied across a storage note of an accessed memory cell of the array. The plurality of register bits to store programmable values used by the independently controlled voltage generation circuit to control the magnitude of the positive voltage. The control circuit controls a duration of the positive voltage. Other embodiments are also described.Type: GrantFiled: April 15, 2015Date of Patent: July 24, 2018Assignee: Cypress Semiconductor CorporationInventors: Ryan Tasuo Hirose, Fredrick B. Jenne, Vijay Raghavan, Igor G. Kouznetsov, Paul Fredrick Ruths, Cristinel Zonte, Bogdan I. Georgescu, Leonard Vasile Gitlan, James Paul Myers
-
Publication number: 20180166140Abstract: A system including a memory architecture is described. In one embodiment, the memory architecture includes an array of non-volatile memory cells, a first independently controlled voltage generation circuit, a plurality of register bits to store programmable values used by the independently controlled voltage generation circuit and a control circuit coupled to the first independently controlled voltage generation circuit. The first independently controlled voltage generation circuit is coupled to supply a positive voltage to the array during program and erase operations so that a magnitude of the positive voltage is applied across a storage note of an accessed memory cell of the array. The plurality of register bits to store programmable values used by the independently controlled voltage generation circuit to control the magnitude of the positive voltage. The control circuit controls a duration of the positive voltage. Other embodiments are also described.Type: ApplicationFiled: April 15, 2015Publication date: June 14, 2018Inventors: Ryan Tasuo Hirose, Fredrick B. Jenne, Vijay Raghavan, Igor G. Kouznetsov, Paul Fredrick Ruths, Cristinel Zonte, Bogdan I. Georgescu, Leonard Vasile Gitlan, James Paul Myers
-
Patent number: 9997641Abstract: A method of scaling a nonvolatile trapped-charge memory device and the device made thereby is provided. In an embodiment, the method includes forming a channel region including polysilicon electrically connecting a source region and a drain region in a substrate. A tunneling layer is formed on the substrate over the channel region by oxidizing the substrate to form an oxide film and nitridizing the oxide film. A multi-layer charge trapping layer including an oxygen-rich first layer and an oxygen-lean second layer is formed on the tunneling layer, and a blocking layer deposited on the multi-layer charge trapping layer. In one embodiment, the method further includes a dilute wet oxidation to densify a deposited blocking oxide and to oxidize a portion of the oxygen-lean second layer.Type: GrantFiled: February 23, 2016Date of Patent: June 12, 2018Assignee: Cypress Semiconductor CorporationInventors: Fredrick B. Jenne, Sagy Charel Levy, Krishnaswamy Ramkumar
-
Publication number: 20180053657Abstract: A semiconductor device and method of manufacturing the same are provided. In one embodiment, method includes forming a first oxide layer over a substrate, forming a silicon-rich, oxygen-rich, oxynitride layer on the first oxide layer, forming a silicon-rich, nitrogen-rich, and oxygen-lean nitride layer over the oxynitride layer, and forming a second oxide layer on the nitride layer. Generally, the nitride layer includes a majority of charge traps distributed in the oxynitride layer and the nitride layer. Optionally, the method further includes forming a middle oxide layer between the oxynitride layer and the nitride layer. Other embodiments are also described.Type: ApplicationFiled: July 28, 2017Publication date: February 22, 2018Applicant: Cypress Semiconductor CorporationInventors: Fredrick B. Jenne, Krishnaswamy Ramkumar
-
Patent number: 9899089Abstract: A system including a memory architecture is described. In one embodiment, the memory architecture includes an array of non-volatile memory cells, a first independently controlled voltage generation circuit, a plurality of register bits to store programmable values used by the independently controlled voltage generation circuit and a control circuit coupled to the first independently controlled voltage generation circuit. The first independently controlled voltage generation circuit is coupled to supply a positive voltage to the array during program and erase operations so that a magnitude of the positive voltage is applied across a storage node of an accessed memory cell of the array. The plurality of register bits to store programmable values used by the independently controlled voltage generation circuit to control the magnitude of the positive voltage. The control circuit controls a duration of the positive voltage. Other embodiments are also described.Type: GrantFiled: September 24, 2013Date of Patent: February 20, 2018Assignee: Cypress Semiconductor CorporationInventors: Ryan Tasuo Hirose, Fredrick B. Jenne, Vijay Raghavan, Igor G. Kouznetsov, Paul Fredrick Ruths, Cristinel Zonte, Bogdan I. Georgescu, Leonard Vasile Gitlan, James Paul Myers
-
Patent number: 9793125Abstract: A semiconductor device includes a polysilicon substrate, a first oxide layer formed on the polysilicon substrate, an oxygen-rich nitride layer formed on the first oxide layer, a second oxide layer formed on the oxygen-rich nitride layer, and an oxygen-poor nitride layer formed on the second oxide layer.Type: GrantFiled: August 11, 2015Date of Patent: October 17, 2017Assignee: CYPRESS SEMICONDUCTOR CORPORATIONInventors: Fredrick B. Jenne, Krishnaswamy Ramkumar