Patents by Inventor Fumiaki Toyama

Fumiaki Toyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10872899
    Abstract: A three-dimensional memory device includes a plurality of alternating stacks of insulating layers and electrically conductive layers located over a substrate, clusters of memory stack structures vertically extending through a respective one of the alternating stacks, and bit lines electrically connected to an upper end of a respective subset of the vertical semiconductor channels. In one embodiment, a subset of the bit lines can include a respective multi-level structure. Each multi-level structure includes bit-line-level bit line segments and an interconnection line segment located at a different level from the bit-line-level bit line segments. In another embodiment, groups of alternating stacks can be alternately indented along a horizontal direction perpendicular to the bit lines to provide dielectric material portions located in lateral indentation regions.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: December 22, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Jee-Yeon Kim, Kwang-Ho Kim, Fumiaki Toyama
  • Patent number: 10861873
    Abstract: A three-dimensional memory device includes a plurality of alternating stacks of insulating layers and electrically conductive layers located over a substrate, clusters of memory stack structures vertically extending through a respective one of the alternating stacks, and bit lines electrically connected to an upper end of a respective subset of the vertical semiconductor channels. In one embodiment, a subset of the bit lines can include a respective multi-level structure. Each multi-level structure includes bit-line-level bit line segments and an interconnection line segment located at a different level from the bit-line-level bit line segments. In another embodiment, groups of alternating stacks can be alternately indented along a horizontal direction perpendicular to the bit lines to provide dielectric material portions located in lateral indentation regions.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: December 8, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Jee-Yeon Kim, Kwang-Ho Kim, Fumiaki Toyama
  • Patent number: 10840260
    Abstract: An alternating stack of insulating layers and dielectric spacer layers is formed over a semiconductor substrate. Memory stack structures are formed through the alternating stack. Backside trenches, a moat trench, and a contact opening are formed through the alternating stack, and are subsequently filled with sacrificial backside trench fill material structures, a sacrificial moat trench fill structure, and a sacrificial contact opening fill structure, respectively. The sacrificial moat trench fill structure is replaced with tubular dielectric wall structure. Portions of the dielectric spacer layers located outside the tubular dielectric wall structure are replaced with electrically conductive layers. The sacrificial backside trench fill material structures are replaced with backside trench fill structures. The sacrificial contact opening fill structure is replaced with a conductive via structure.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: November 17, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: James Kai, Murshed Chowdhury, Fumiaki Toyama, Johann Alsmeier, Masaaki Higashitani
  • Publication number: 20200357814
    Abstract: A three-dimensional memory device includes a plurality of alternating stacks of insulating layers and electrically conductive layers located over a substrate, clusters of memory stack structures vertically extending through a respective one of the alternating stacks, and bit lines electrically connected to an upper end of a respective subset of the vertical semiconductor channels. In one embodiment, a subset of the bit lines can include a respective multi-level structure. Each multi-level structure includes bit-line-level bit line segments and an interconnection line segment located at a different level from the bit-line-level bit line segments. In another embodiment, groups of alternating stacks can be alternately indented along a horizontal direction perpendicular to the bit lines to provide dielectric material portions located in lateral indentation regions.
    Type: Application
    Filed: May 7, 2019
    Publication date: November 12, 2020
    Inventors: Jee-Yeon KIM, Kwang-Ho KIM, Fumiaki TOYAMA
  • Publication number: 20200357811
    Abstract: A three-dimensional memory device includes a plurality of alternating stacks of insulating layers and electrically conductive layers located over a substrate, clusters of memory stack structures vertically extending through a respective one of the alternating stacks, and bit lines electrically connected to an upper end of a respective subset of the vertical semiconductor channels. In one embodiment, a subset of the bit lines can include a respective multi-level structure. Each multi-level structure includes bit-line-level bit line segments and an interconnection line segment located at a different level from the bit-line-level bit line segments. In another embodiment, groups of alternating stacks can be alternately indented along a horizontal direction perpendicular to the bit lines to provide dielectric material portions located in lateral indentation regions.
    Type: Application
    Filed: May 7, 2019
    Publication date: November 12, 2020
    Inventors: Jee-Yeon KIM, Kwang-Ho KIM, Fumiaki TOYAMA
  • Publication number: 20200294599
    Abstract: The total chip area for a three-dimensional memory device can be reduced employing a design layout in which the word line decoder circuitry is formed underneath an array of memory stack structures. The interconnection between the word lines and the word line decoder circuitry can be provided by forming discrete word line contact via structures. The discrete word line contact via structures can be formed by employing multiple sets of etch masks with overlapping opening areas and employed to etch a different number of pairs of insulating layers and electrically conductive layers, thereby obviating the need to form staircase regions having stepped surfaces. Sets of at least one conductive interconnection structure can be employed to provide vertical electrical connection to the word line decoder circuitry. Bit line drivers can also be formed underneath the array of memory stack structures to provide greater areal efficiency.
    Type: Application
    Filed: June 3, 2020
    Publication date: September 17, 2020
    Inventors: Hiroyuki OGAWA, Fumiaki TOYAMA, Takuya ARIKI
  • Patent number: 10726921
    Abstract: A three-dimensional block includes a stack comprising a plurality of control gate layers configured to bias memory cells of the block. The block includes a plurality of track regions that includes three or more hookup regions. The plurality of track regions separate the memory cells into three memory cell regions. Tracks extending in the track regions supply voltages to the hookup regions. A system includes a memory plane of blocks, and a plurality of track regions, each extending across the memory plane of blocks.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: July 28, 2020
    Assignee: SanDisk Technologies LLC
    Inventors: Chia-Lin Hsiung, Fumiaki Toyama, Tai-Yuan Tseng, Yan Li
  • Publication number: 20200235120
    Abstract: An alternating stack of insulating layers and dielectric spacer layers is formed over a semiconductor substrate. Memory stack structures are formed through the alternating stack. Backside trenches, a moat trench, and a contact opening are formed through the alternating stack, and are subsequently filled with sacrificial backside trench fill material structures, a sacrificial moat trench fill structure, and a sacrificial contact opening fill structure, respectively. The sacrificial moat trench fill structure is replaced with tubular dielectric wall structure. Portions of the dielectric spacer layers located outside the tubular dielectric wall structure are replaced with electrically conductive layers. The sacrificial backside trench fill material structures are replaced with backside trench fill structures. The sacrificial contact opening fill structure is replaced with a conductive via structure.
    Type: Application
    Filed: January 18, 2019
    Publication date: July 23, 2020
    Inventors: James KAI, Murshed CHOWDHURY, Fumiaki TOYAMA, Johann ALSMEIER, Masaaki HIGASHITANI
  • Patent number: 10720213
    Abstract: The total chip area for a three-dimensional memory device can be reduced employing a design layout in which the word line decoder circuitry is formed underneath an array of memory stack structures. The interconnection between the word lines and the word line decoder circuitry can be provided by forming discrete word line contact via structures. The discrete word line contact via structures can be formed by employing multiple sets of etch masks with overlapping opening areas and employed to etch a different number of pairs of insulating layers and electrically conductive layers, thereby obviating the need to form staircase regions having stepped surfaces. Sets of at least one conductive interconnection structure can be employed to provide vertical electrical connection to the word line decoder circuitry. Bit line drivers can also be formed underneath the array of memory stack structures to provide greater areal efficiency.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: July 21, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Hiroyuki Ogawa, Fumiaki Toyama, Takuya Ariki
  • Publication number: 20200203365
    Abstract: A three-dimensional memory device includes an alternating stack of insulating layers and electrically conductive layers located over a substrate, memory stack structures extending through the alternating stack, where each of the memory stack structures contains a respective memory film and a respective vertical semiconductor channel, drain regions contacting an upper end of a respective one of the vertical semiconductor channels, first contact via structures directly contacting a first subset of the drain regions and each having a first horizontal cross-sectional area, and second contact via structures directly contacting a second subset of the drain regions and each having a second horizontal cross-sectional area that is greater than the first horizontal cross-sectional area.
    Type: Application
    Filed: December 24, 2018
    Publication date: June 25, 2020
    Inventors: Lishan WENG, Fumiaki TOYAMA, Mohan DUNGA
  • Patent number: 10658381
    Abstract: Memory dies on a wafer may include multiple memory blocks including bit lines extending along different directions. A memory die may include a first-type plane including first memory blocks and a second-type plane including second memory blocks. In this case, memory blocks having different bit line directions may be formed within a same memory die. An exposure field may include multiple types of memory dies that are oriented in different orientations. The bit line directions may be oriented differently in the multiple types of memory dies. Each lithographic exposure process may include a first step in which lithographic patterns in first exposure fields are oriented in one direction, and a second step in which lithographic patterns in second exposure fields are oriented in another direction. The different orientations of bit lines and word lines may change local directions of stress to reduce wafer distortion.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: May 19, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Jixin Yu, Fumiaki Toyama, Masaaki Higashitani, Tong Zhang, Chun Ge, Xin Yuan Li, Johann Alsmeier
  • Patent number: 10580787
    Abstract: At least one diode, lower-level metal interconnect structures embedded within lower-level dielectric material layers, and a doped semiconductor material layer are formed over a semiconductor substrate. An electrically conductive path is provided between the at least one diode and the doped semiconductor material layer. An alternating stack of insulating layers and spacer material layers and memory stack structures extending therethrough are formed above the doped semiconductor material layer. A backside trench is formed through the alternating stack. The electrically conductive path is employed during plasma etch processes employed to form the memory stack structures and the backside trench to provide a discharge path for accumulated electrical charges. The electrically conductive path is subsequently disconnected by removing a conductive component underlying the backside trench. The spacer material layers can be replaced with electrically conductive layers employing the backside trench.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: March 3, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Masatoshi Nishikawa, Fumiaki Toyama
  • Publication number: 20200066703
    Abstract: A memory-containing die includes a three-dimensional memory array, a memory dielectric material layer located on a first side of the three-dimensional memory array, and memory-side bonding pads. A logic die includes a peripheral circuitry configured to control operation of the three-dimensional memory array, logic dielectric material layers located on a first side of the peripheral circuitry, and logic-side bonding pads included in the logic dielectric material layers. The logic-side bonding pads includes a pad-level mesh structure electrically connected to a source power supply circuit within the peripheral circuitry and containing an array of discrete openings therethrough, and discrete logic-side bonding pads. The logic-side bonding pads are bonded to a respective one, or a respective subset, of the memory-side bonding pads. The pad-level mesh structure can be used as a component of a source power distribution network.
    Type: Application
    Filed: October 31, 2019
    Publication date: February 27, 2020
    Inventors: Kwang-Ho KIM, Masaaki HIGASHITANI, Fumiaki TOYAMA, Akio NISHIDA
  • Patent number: 10510738
    Abstract: A memory-containing die includes a three-dimensional memory array, a memory dielectric material layer located on a first side of the three-dimensional memory array, and memory-side bonding pads. A logic die includes a peripheral circuitry configured to control operation of the three-dimensional memory array, logic dielectric material layers located on a first side of the peripheral circuitry, and logic-side bonding pads included in the logic dielectric material layers. The logic-side bonding pads includes a pad-level mesh structure electrically connected to a source power supply circuit within the peripheral circuitry and containing an array of discrete openings therethrough, and discrete logic-side bonding pads. The logic-side bonding pads are bonded to a respective one, or a respective subset, of the memory-side bonding pads. The pad-level mesh structure can be used as a component of a source power distribution network.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: December 17, 2019
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Kwang-Ho Kim, Masaaki Higashitani, Fumiaki Toyama, Akio Nishida
  • Publication number: 20190371800
    Abstract: At least one diode, lower-level metal interconnect structures embedded within lower-level dielectric material layers, and a doped semiconductor material layer are formed over a semiconductor substrate. An electrically conductive path is provided between the at least one diode and the doped semiconductor material layer. An alternating stack of insulating layers and spacer material layers and memory stack structures extending therethrough are formed above the doped semiconductor material layer. A backside trench is formed through the alternating stack. The electrically conductive path is employed during plasma etch processes employed to form the memory stack structures and the backside trench to provide a discharge path for accumulated electrical charges. The electrically conductive path is subsequently disconnected by removing a conductive component underlying the backside trench. The spacer material layers can be replaced with electrically conductive layers employing the backside trench.
    Type: Application
    Filed: May 29, 2018
    Publication date: December 5, 2019
    Inventors: Masatoshi NISHIKAWA, Fumiaki TOYAMA
  • Patent number: 10381371
    Abstract: A three dimensional NAND memory device includes word line driver devices located on or over a substrate, an alternating stack of word lines and insulating layers located over the word line driver devices, a plurality of memory stack structures extending through the alternating stack, each memory stack structure including a memory film and a vertical semiconductor channel, and through-memory-level via structures which electrically couple the word lines in a first memory block to the word line driver devices. The through-memory-level via structures extend through a through-memory-level via region located between a staircase region of the first memory block and a staircase region of another memory block.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: August 13, 2019
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Hiroyuki Ogawa, Fumiaki Toyama, Yuki Mizutani
  • Publication number: 20190221557
    Abstract: A memory-containing die includes a three-dimensional memory array, a memory dielectric material layer located on a first side of the three-dimensional memory array, and memory-side bonding pads. A logic die includes a peripheral circuitry configured to control operation of the three-dimensional memory array, logic dielectric material layers located on a first side of the peripheral circuitry, and logic-side bonding pads included in the logic dielectric material layers. The logic-side bonding pads includes a pad-level mesh structure electrically connected to a source power supply circuit within the peripheral circuitry and containing an array of discrete openings therethrough, and discrete logic-side bonding pads. The logic-side bonding pads are bonded to a respective one, or a respective subset, of the memory-side bonding pads. The pad-level mesh structure can be used as a component of a source power distribution network.
    Type: Application
    Filed: January 9, 2019
    Publication date: July 18, 2019
    Inventors: Kwang-Ho KIM, Masaaki HIGASHITANI, Fumiaki TOYAMA, Akio NISHIDA
  • Patent number: 10319680
    Abstract: A structure includes a metal interconnect structure embedded in a lower interconnect level dielectric layer overlying a substrate, at least one material layer overlying the metal interconnect structure, a first contact level dielectric layer overlying the at least one material layer; a metal contact via structure vertically extending through the first contact level dielectric layer and the at least one material layer and contacting a top surface of the metal interconnect structure, and an encapsulated tubular cavity laterally surrounding at least a lower portion of the metal contact via structure, and vertically extending through the at least one material layer.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: June 11, 2019
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Jongsun Sel, Masaaki Higashitani, Mohan Dunga, Fumiaki Toyama, Peter Rabkin
  • Patent number: 10256248
    Abstract: Lower level metal interconnect structures are formed over a substrate with semiconductor devices thereupon. A semiconductor material layer and an alternating stack of spacer dielectric layers and insulating layers is formed over the lower level metal interconnect structures. An array of memory stack structures is formed through the alternating stack. Trenches are formed through the alternating stack such that a staircase region is located farther away from a threshold lateral distance from the trenches, while neighboring staircase regions are formed within the threshold lateral distance from the trenches. Portions of the spacer dielectric layers proximal to the trenches are replaced with electrically conductive layers, while a remaining portion of the alternating stack is present in the staircase region.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: April 9, 2019
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Zhenyu Lu, Jixin Yu, Johann Alsmeier, Fumiaki Toyama, Yuki Mizutani, Hiroyuki Ogawa, Chun Ge, Daxin Mao, Yanli Zhang, Alexander Chu, Yan Li
  • Publication number: 20190088335
    Abstract: A three-dimensional block includes a stack comprising a plurality of control gate layers configured to bias memory cells of the block. The block includes a plurality of track regions that includes three or more hookup regions. The plurality of track regions separate the memory cells into three memory cell regions. Tracks extending in the track regions supply voltages to the hookup regions. A system includes a memory plane of blocks, and a plurality of track regions, each extending across the memory plane of blocks.
    Type: Application
    Filed: March 30, 2018
    Publication date: March 21, 2019
    Applicant: SanDisk Technologies LLC
    Inventors: Chia-Lin Hsiung, Fumiaki Toyama, Tai-Yuan Tseng, Yan Li