Patents by Inventor Gaurav Agrawal

Gaurav Agrawal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10703959
    Abstract: Removing an asphaltene particle from a substrate includes contacting a silicate nanoparticle with a chemical group to form a functionalized silicate nanoparticle, the chemical group includes a first portion; and a second portion comprising a nonaromatic moiety, the first portion being bonded to the silicate nanoparticle; contacting the asphaltene particle with the functionalized silicate nanoparticle, the asphaltene particle being disposed on the substrate; interposing the functionalized silicate nanoparticle between the asphaltene particle and the substrate; and separating the asphaltene particle from the substrate with the functionalized silicate nanoparticle to remove the asphaltene particle. A composition includes a functionalized silicate nanoparticle comprising a reaction product of a silicate nanoparticle and a functionalization compound; and a fluid.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: July 7, 2020
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Oleg A. Mazyar, Valery N. Khabashesku, Soma Chakraborty, Gaurav Agrawal, Toby D. Hain
  • Patent number: 10597969
    Abstract: A seal including a fluid resistive cover, a structured element disposed at an inside surface of the cover and drawable with the cover between a first position and a second position.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: March 24, 2020
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Naeem-Ur-Rehman Minhas, Gaurav Agrawal, Asok Janardhanan Nair
  • Publication number: 20200063046
    Abstract: This invention relates to thermally-treating and hydroprocessing pyrolysis tar to produce a hydroprocessed pyrolysis tar, but without excessive foulant accumulation during the hydroprocessing. The invention also relates to upgrading the hydroprocessed tar by additional hydroprocessing; to products of such processing; to blends comprising one or more of such products; and to the use of such products and blends, e.g., as lubricants, fuels, and/or constituents thereof.
    Type: Application
    Filed: December 1, 2017
    Publication date: February 27, 2020
    Inventors: Kapil Kandel, Krystle J. Emanuele, Glenn A. Heeter, Gaurav Agrawal, Jeffrey C. Yeh, Teng Xu
  • Patent number: 10538432
    Abstract: Coated diamond particles have solid diamond cores and at least one graphene layer. Methods of forming coated diamond particles include coating diamond particles with a charged species and coating the diamond particles with a graphene layer. A composition includes a substance and a plurality of coated diamond particles dispersed within the substance. An intermediate structure includes a hard polycrystalline material comprising a first plurality of diamond particles and a second plurality of diamond particles. The first plurality of diamond particles and the second plurality of diamond particles are interspersed. A method of forming a polycrystalline compact includes catalyzing the formation of inter-granular bonds between adjacent particles of a plurality of diamond particles having at least one graphene layer.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: January 21, 2020
    Assignee: Baker Hughes, a GE company, LLC
    Inventors: Soma Chakraborty, Anthony A. DiGiovanni, Gaurav Agrawal, Danny E. Scott, Vipul Mathur
  • Publication number: 20190323130
    Abstract: A corrosion inhibitor for use in aqueous fluids, e.g. brine, which contact a metal surface, contains a blend or cross-linked reaction product of a main chain type polybenzoxazine (MCTPB) and a chitosan component selected from the group consisting of chitosan, chitosan glycol, and combinations thereof. The MCTPB can be made by reacting formaldehyde, bisphenol A, and tetraethylenepentamine (TEPA). The corrosion inhibitor may contain a small amount of an inorganic acid and/or an organic acid.
    Type: Application
    Filed: April 29, 2019
    Publication date: October 24, 2019
    Applicant: Baker Hughes, a GE company, LLC
    Inventors: Taher Bakr Hafiz, Abdulaziz Abdulrhman Almathami, Gaurav Agrawal, Manuel Hoegerl
  • Patent number: 10408027
    Abstract: A method of extracting hydrocarbons from a subterranean formation comprises forming a suspension comprising reactive particles and a carrier fluid. The suspension is introduced into a subterranean formation containing a hydrocarbon material. At least a portion of the reactive particles are exothermically reacted with at least one other material within the subterranean formation to form a treated hydrocarbon material from the hydrocarbon material. The treated hydrocarbon material is extracted from the subterranean formation. An additional method of extracting hydrocarbons from a subterranean formation, and a method of treating a hydrocarbon material within a subterranean formation are also described.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: September 10, 2019
    Assignee: Baker Hughes, a GE Company, LLC
    Inventors: Oleg A. Mazyar, Valery N. Khabashesku, Oleksandr V. Kuznetsov, Gaurav Agrawal, Michael H. Johnson
  • Patent number: 10392324
    Abstract: A process to separate paraxylene from a mixture of paraxylene, metaxylene, orthoxylene, and ethylbenzene in a commercial simulated moving bed apparatus in a reduced number of beds is provided, allowing an additional separation to be conducted in the remaining beds. This additional separation may separate another xylene isomer, ethylbenzene, or a non-aromatic C8+ hydrocarbon from the raffinate stream produced by the first separation. A PowerFeed process is used to recover paraxylene in a first adsorption zone containing 8-16 beds of a conventional 24-bed simulated moving bed adsorption apparatus, and then a second separation may be conducted in a second adsorption zone containing the remaining beds.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: August 27, 2019
    Assignees: EXXONMOBIL CHEMICAL PATENTS INC., GEORGIA TECH RESEARCH CORPORATION
    Inventors: Michael W. Weber, Yoshiaki Kawajiri, Michael Salciccioli, John R. Porter, Gaurav Agrawal, Dana L. Pilliod, Siwei Guo, Jason Bentley
  • Publication number: 20190255616
    Abstract: Polycrystalline compacts include a polycrystalline superabrasive material comprising a first plurality of grains of superabrasive material having a first average grain size and a second plurality of grains of superabrasive material having a second average grain size smaller than the first average grain size. The first plurality of grains is dispersed within a substantially continuous matrix of the second plurality of grains. Earth-boring tools may include a body and at least one polycrystalline compact attached thereto. Methods of forming polycrystalline compacts may include coating relatively larger grains of superabrasive material with relatively smaller grains of superabrasive material, forming a green structure comprising the coated grains, and sintering the green structure. Other methods include mixing diamond grains with a catalyst and subjecting the mixture to a pressure greater than about five gigapascals (5.0 GPa) and a temperature greater than about 1,300° C.
    Type: Application
    Filed: April 23, 2019
    Publication date: August 22, 2019
    Inventors: Danny E. Scott, Anthony A. DiGiovanni, Gaurav Agrawal, Soma Chakraborty
  • Publication number: 20190247499
    Abstract: In alternative embodiments, the invention provides a “triple combination” therapy for treating, ameliorating and preventing Crohn's Disease (or Crohn syndrome, terminal or distal ileitis or regional enteritis) or related disorders and conditions in mammals, such as paratuberculosis in mammals, or Johne's disease, including genetically-predisposed and chronic disorders, where the microbial or bacterial flora of the bowel is at least one causative or symptom-producing factor; and compositions for practicing same. In alternative embodiments, methods and compositions of the invention comprise or comprise use of therapies, medications, formulations and pharmaceuticals comprising active agents that can suppress or eradicate the microbiota super-infection that causes Crohn's Disease or paratuberculosis infection in mammals.
    Type: Application
    Filed: April 23, 2019
    Publication date: August 15, 2019
    Inventor: Gaurav AGRAWAL
  • Patent number: 10376578
    Abstract: In alternative embodiments, the invention provides a “triple combination” therapy for treating, ameliorating and preventing Crohn's Disease (or Crohn syndrome, terminal or distal ileitis or regional enteritis) or related disorders and conditions in mammals, such as paratuberculosis in mammals, or Johne's disease, including genetically-predisposed and chronic disorders, where the microbial or bacterial flora of the bowel is at least one causative or symptom-producing factor; and compositions for practicing same. In alternative embodiments, methods and compositions of the invention comprise or comprise use of therapies, medications, formulations and pharmaceuticals comprising active agents that can suppress or eradicate the microbiota super-infection that causes Crohn's Disease or paratuberculosis infection in mammals.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: August 13, 2019
    Inventor: Gaurav Agrawal
  • Patent number: 10351489
    Abstract: Disclosed is a process for recovering paraxylene in which a first simulated moving bed adsorption unit is used to produce two extract streams—one rich in paraxylene and a paraxylene-rich extract stream that is lean in ethylbenzene and an ethylbenzene-rich extract stream that is lean in paraxylene- and a paraxylene-depleted raffinate stream. A significant amount of the ethylbenzene is removed in the ethylbenzene-rich extract stream (at least enough to limit buildup in the isomerization loop), so the paraxylene-depleted raffinate stream may be isomerized in the liquid phase. Avoiding vapor phase isomerization saves energy and capital, as liquid phase isomerization requires less energy and capital than the vapor phase isomerization process due to the requirement of vaporizing the paraxylene-depleted stream and the use of hydrogen, which requires an energy and capital intensive hydrogen recycle loop.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: July 16, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael Salciccioli, Gaurav Agrawal, Michael W. Weber, Dana L. Pilliod, Catherine M. Dorsi
  • Publication number: 20190211254
    Abstract: A method of breaking the viscosity of a treatment fluid comprises: adding hydrophobic nanoparticles to a treatment fluid comprising a base fluid and a viscoelastic surfactant gelling agent, the hydrophobic nanoparticles comprising metallic nanoparticles that are surface modified with C6-30 aliphatic groups, wherein the hydrophobic nanoparticles are added in an amount effective to decrease the viscosity of the treatment fluid as compared to a treatment fluid absent the hydrophobic nanoparticles.
    Type: Application
    Filed: March 20, 2019
    Publication date: July 11, 2019
    Applicant: Baker Hughes, a GE company, LLC
    Inventors: Shiv Shankar Sangaru, Prahlad Yadav, Tianping Huang, Gaurav Agrawal, Pranjal Sarmah
  • Patent number: 10344222
    Abstract: A hydrocarbon conversion process comprises providing a hydrocarbon feedstock comprising an effluent fraction from a pyrolysis process, wherein the effluent fraction has an initial boiling point at atmospheric pressure of at least 177° C. and a final boiling point at atmospheric pressure of no more than 343° C. and comprises at least 0.5 wt. % of olefinic hydrogen atoms based on the total weight of hydrogen atoms in the effluent fraction. The hydrocarbon feedstock is hydroprocessed in at least one hydroprocessing zone in the presence of treatment gas comprising molecular hydrogen under catalytic hydroprocessing conditions to produce a hydroprocessed product comprising less than 0.5 wt. % of olefinic hydrogen atoms based on the total weight of hydrogen atoms in the hydroprocessed product. The hydroprocessing conditions comprise a temperature from 150 to 350° C. and a pressure from 500 to 1500 psig (3550 to 10445 kPa-a).
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: July 9, 2019
    Assignee: ExonMobil Chemical Patents Inc.
    Inventors: Gaurav Agrawal, Stephen T. Cohn, Kapil Kandel, Subramanya V. Nayak, Teng Xu
  • Publication number: 20190185394
    Abstract: A process to separate paraxylene from a mixture of paraxylene, metaxylene, orthoxylene, and ethylbenzene in a commercial simulated moving bed apparatus in a reduced number of beds is provided, allowing an additional separation to be conducted in the remaining beds. This additional separation may separate another xylene isomer, ethylbenzene, or a non-aromatic C8+ hydrocarbon from the raffinate stream produced by the first separation. A PowerFeed process is used to recover paraxylene in a first adsorption zone containing 8-16 beds of a conventional 24-bed simulated moving bed adsorption apparatus, and then a second separation may be conducted in a second adsorption zone containing the remaining beds.
    Type: Application
    Filed: May 17, 2017
    Publication date: June 20, 2019
    Inventors: Michael W. WEBER, Yoshiaki KAWAJIRI, Michael SALCICCIOLI, John R. PORTER, Gaurav AGRAWAL, Dana L. PILLIOD, Siwei GUO, Jason BENTLEY
  • Publication number: 20190184311
    Abstract: The process involves the use of two rotary valves to implement Varicol operation of a simulated moving bed apparatus to separate a product from at least one multicomponent feed. In a particular embodiment, paraxylene is separated from a mixture of C8 aromatic hydrocarbons. The use of the Varicol process further enhances the separation of the desired product and provides flexibility with a simulated moving bed apparatus using dual rotary valves.
    Type: Application
    Filed: February 9, 2017
    Publication date: June 20, 2019
    Inventors: Michael W. WEBER, Siwei GUO, Yoshiaki KAWAJIRI, Jason BENTLEY, Gaurav AGRAWAL, Michael SALCICCIOLI, Dana L. PILLIOD
  • Patent number: 10323463
    Abstract: Methods of making cutting elements for earth-boring tools may involve placing a powdered mixture into a mold. The powdered mixture may include a plurality of core particles comprising a diamond material and having an average diameter of between 1 ?m and 500 ?m, a coating material adhered to and covering at least a portion of an outer surface of each core particle of the plurality of core particles, the coating material comprising an amine terminated group, and a plurality of nanoparticles selected from the group consisting of carbon nanotubes, nanographite, nanographene, non-diamond carbon allotropes, surface modified nanodiamond, nanoscale particles of BeO, and nanoscale particles comprising a Group VIIIA element adhered to the coating material. The powdered mixture may be sintered to form a polycrystalline diamond table. The polycrystalline diamond table may be attached to a substrate.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: June 18, 2019
    Assignee: Baker Hughes Incorporated
    Inventors: Soma Chakraborty, Oleksandr V. Kuznetsov, Gaurav Agrawal
  • Patent number: 10316415
    Abstract: A corrosion inhibitor for use in aqueous fluids, e.g. brine, which contact a metal surface, contains a blend or cross-linked reaction product of a main chain type polybenzoxazine (MCTPB) and a chitosan component selected from the group consisting of chitosan, chitosan glycol, and combinations thereof. The MCTPB can be made by reacting formaldehyde, bisphenol A, and tetraethylenepentamine (TEPA). The corrosion inhibitor may contain a small amount of an inorganic acid and/or an organic acid.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: June 11, 2019
    Assignee: Baker Hughes, a GE company, LLC
    Inventors: Taher Bakr Hafiz, Abdulaziz Abdulrhman Almathami, Gaurav Agrawal, Manuel Hoegerl
  • Patent number: 10300404
    Abstract: Disclosed herein are processes for recovering paraxylene in which a first simulated moving bed adsorption unit is used to produce a paraxylene-rich extract stream that also contains a significant amount of the ethylbenzene and a paraxylene-depleted raffinate stream. Because a significant amount of the ethylbenzene is removed in the paraxylene-rich extract stream (at least enough to limit buildup in the isomerization loop), the paraxylene-depleted raffinate stream may be isomerized in the liquid phase. Avoiding vapor phase isomerization saves energy and capital, as liquid phase isomerization requires less energy and capital than the vapor phase isomerization process due to the requirement of vaporizing the paraxylene-depleted stream and the use of hydrogen, which requires an energy- and capital-intensive hydrogen recycle loop.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: May 28, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Catherine M. Dorsi, Gaurav Agrawal, Michael W. Weber, Dana L. Pilliod, John R. Porter
  • Patent number: 10280361
    Abstract: A method of breaking the viscosity of a treatment fluid comprises: adding hydrophobic nanoparticles to a treatment fluid comprising a base fluid and a viscoelastic surfactant gelling agent, the hydrophobic nanoparticles comprising metallic nanoparticles that are surface modified with C6-30 aliphatic groups, wherein the hydrophobic nanoparticles are added in an amount effective to decrease the viscosity of the treatment fluid as compared to a treatment fluid absent the hydrophobic nanoparticles.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: May 7, 2019
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Shiv Shankar Sangaru, Prahlad Yadav, Tianping Huang, Gaurav Agrawal, Pranjal Sarmah
  • Patent number: 10263627
    Abstract: A delay-locked loop (DLL) includes a delay line configured to receive a reference clock signal and a control signal, and generate a first plurality of clock signals. Each clock signal of the first plurality is configured to have a different phase delay relative to the reference clock signal. A phase frequency detector is coupled to the delay circuit and is configured to receive a first clock signal and a second clock signal of the first plurality, and generate up and down control signals. A charge pump is coupled to receive the up and down control signals and generates a charge pump current based on the up and down control signals. An output of the charge pump is coupled to the delay line at a voltage control node. An initialization circuit is coupled to the voltage control node and is configured to generate an initialization voltage based on the reference clock signal frequency.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: April 16, 2019
    Assignee: NXP USA, INC.
    Inventors: Deependra Jain, Krishna Thakur, Gaurav Agrawal