Patents by Inventor Gaurav Agrawal

Gaurav Agrawal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10227850
    Abstract: Flow control devices for regulating fluid flow from a subterranean formation by utilizing materials containing hydrophilic surfaces in a flow path of formation fluids. The flow control device comprises a tubular body, a flow path, and a material having a hydrophilic surface disposed within the flow path to restrict the flow of water. Methods of making and systems utilizing the flow control devices are disclosed.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: March 12, 2019
    Assignee: Baker Hughes Incorporated
    Inventors: Devesh K. Agrawal, Anil K. Sadana, Gaurav Agrawal
  • Patent number: 10227522
    Abstract: A method of treating a subterranean formation penetrated by a well comprises combining an aqueous base fluid, a viscoelastic surfactant gelling agent, two or more types of the following nanoparticles: an alkaline earth metal oxide; an alkaline earth metal hydroxide; a transition metal oxide; or a transition metal hydroxide to form a treatment fluid, and pumping the treatment fluid into the well, wherein the weight ratio of the two or more types of the nanoparticles is selected such that the treatment fluid has an improved fluid efficiency as compared to an otherwise identical reference fluid except for comprising only one type of the nanoparticles selected from an alkaline earth metal oxide; an alkaline earth metal hydroxide; a transition metal oxide; and a transition metal hydroxide.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: March 12, 2019
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Shiv Shankar Sangaru, Prahlad Yadav, Tianping Huang, Gaurav Agrawal, Mohammed Al-Rabah
  • Patent number: 10167674
    Abstract: Method of fabricating polycrystalline diamond include functionalizing surfaces of diamond nanoparticles with fluorine, combining the functionalized diamond nanoparticles with a polymer to form a mixture, and subjecting the mixture to high pressure and high temperature (HPHT) conditions to form inter-granular bonds between the diamond nanoparticles. A green body includes a plurality of diamond nanoparticles functionalized with fluorine, and a polymer material interspersed with the plurality of diamond nanoparticles. A method of forming cutting element includes functionalizing surfaces of diamond nanoparticles with fluorine, and combining the functionalized diamond nanoparticles with a polymer to form a mixture. The mixture is formed over a body, and the mixture and the body are subjected to HPHT conditions to form inter-granular bonds between the diamond nanoparticles and secure the bonded diamond nanoparticles to the body.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: January 1, 2019
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Valery N. Khabashesku, Anthony A. DiGiovanni, Gaurav Agrawal
  • Publication number: 20180340393
    Abstract: A seal including a fluid resistive cover, a structured element disposed at an inside surface of the cover and drawable with the cover between a first position and a second position.
    Type: Application
    Filed: May 26, 2017
    Publication date: November 29, 2018
    Applicant: Baker Hughes Incorporated
    Inventors: Naeem-Ur-Rehman Minhas, Gaurav Agrawal, Asok Janardhanan Nair
  • Patent number: 10138165
    Abstract: A formulation for use as a lost circulation preventive material is a cement-forming aqueous fluid comprising water, at least one viscoelastic surfactant (VES), at least one monovalent or multivalent salt, at least one magnesium powder, and at least one retarder. The formulation is used in a method of drilling into a subterranean formation that includes introducing into a wellbore passing at least partially through the subterranean formation the cement-forming aqueous fluid, and further increasing the viscosity of the aqueous fluid by the action of the VES forming elongated micelles; where the at least one monovalent salt is present in an amount effective to pseudo-crosslink the elongated VES micelles to further increase the viscosity of the aqueous fluid. The formulation further forms a cement by reacting the at least one magnesium powder and the water which reaction is retarded by the retarder. The water may be saline water.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: November 27, 2018
    Assignee: Baker Hughes, a GE company, LLC
    Inventors: Pranjal Sarmah, Prahlad Kumar Yadav, Gaurav Agrawal, Tianping Huang
  • Publication number: 20180334622
    Abstract: A hydrocarbon conversion process comprises providing a hydrocarbon feedstock comprising an effluent fraction from a pyrolysis process, wherein the effluent fraction has an initial boiling point at atmospheric pressure of at least 177° C. and a final boiling point at atmospheric pressure of no more than 343° C. and comprises at least 0.5 wt. % of olefinic hydrogen atoms based on the total weight of hydrogen atoms in the effluent fraction. The hydrocarbon feedstock is hydroprocessed in at least one hydroprocessing zone in the presence of treatment gas comprising molecular hydrogen under catalytic hydroprocessing conditions to produce a hydroprocessed product comprising less than 0.5 wt. % of olefinic hydrogen atoms based on the total weight of hydrogen atoms in the hydroprocessed product. The hydroprocessing conditions comprise a temperature from 150 to 350° C. and a pressure from 500 to 1500 psig (3550 to 10445 kPa-a).
    Type: Application
    Filed: May 4, 2018
    Publication date: November 22, 2018
    Inventors: Gaurav Agrawal, Stephen T. Cohn, Kapil Kandel, Subramanya V. Nayak, Teng Xu
  • Publication number: 20180320496
    Abstract: A method of extracting hydrocarbons from a subterranean formation comprises forming a suspension comprising reactive particles and a carrier fluid. The suspension is introduced into a subterranean formation containing a hydrocarbon material. At least a portion of the reactive particles are exothermically reacted with at least one other material within the subterranean formation to form a treated hydrocarbon material from the hydrocarbon material. The treated hydrocarbon material is extracted from the subterranean formation. An additional method of extracting hydrocarbons from a subterranean formation, and a method of treating a hydrocarbon material within a subterranean formation are also described.
    Type: Application
    Filed: July 17, 2018
    Publication date: November 8, 2018
    Inventors: Oleg A. Mazyar, Valery N. Khabashesku, Oleksandr V. Kuznetsov, Gaurav Agrawal, Michael H. Johnson
  • Patent number: 10066441
    Abstract: Methods of fabricating polycrystalline diamond include subjecting a particle mixture to high pressure and high temperature (HPHT) conditions to form inter-granular diamond-to-diamond bonds. Before being subjected to HPHT conditions, the particle mixture includes a plurality of non-diamond nanoparticles, diamond nanoparticles, and diamond grit. The non-diamond nanoparticles includes carbon-free cores and at least one functional group attached to the cores. Cutting elements for use in an earth-boring tool include a polycrystalline diamond material formed by such processes. Earth-boring tools include such cutting elements.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: September 4, 2018
    Assignee: Baker Hughes Incorporated
    Inventors: Soma Chakraborty, Anthony A. DiGiovanni, Gaurav Agrawal
  • Patent number: 10060237
    Abstract: A method of extracting hydrocarbons from a subterranean formation comprises forming a suspension comprising reactive particles and a carrier fluid. The suspension is introduced into a subterranean formation containing a hydrocarbon material. At least a portion of the reactive particles are exothermically reacted with at least one other material within the subterranean formation to form a treated hydrocarbon material from the hydrocarbon material. The treated hydrocarbon material is extracted from the subterranean formation. An additional method of extracting hydrocarbons from a subterranean formation, and a method of treating a hydrocarbon material within a subterranean formation are also described.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: August 28, 2018
    Assignee: Baker Hughes, a GE company, LLC
    Inventors: Oleg A. Mazyar, Oleksandr V. Kuznetsov, Gaurav Agrawal, Michael H. Johnson, Valery N. Khabashesku
  • Patent number: 10005672
    Abstract: A method of growing carbonaceous particles comprises depositing carbon from a carbon source, onto a particle nucleus, the particle nucleus being a carbon-containing material, an inorganic material, or a combination comprising at least one of the foregoing, and the carbon source comprising a saturated or unsaturated compound of C20 or less, the carbonaceous particles having a uniform particle size and particle size distribution. The method is useful for preparing polycrystalline diamond compacts (PDCs) by a high-pressure, high-temperature (HPHT) process.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: June 26, 2018
    Assignee: Baker Hughes, a GE company, LLC
    Inventors: Oleg A. Mazyar, Soma Chakraborty, Oleksandr V. Kuznetsov, Anthony A. DiGiovanni, Gaurav Agrawal, Michael H. Johnson
  • Publication number: 20180155598
    Abstract: A method of improving rheological properties of a divalent brine based downhole treatment fluid at an elevated temperature comprises adding to the divalent brine based downhole treatment fluid a rheological modifier, which comprises a carboxylic acid ester, or a phosphate ester blended with an ethoxylated glycol, or a combination comprising at least one of the foregoing in an amount effective to improve the rheological properties of the divalent brine based downhole treatment fluid at a temperature of greater than about 200° F. The divalent brine based downhole treatment fluid comprises calcium bromide, calcium chloride, zinc bromide, zinc chloride, or a combination comprising at least one of the foregoing.
    Type: Application
    Filed: November 29, 2017
    Publication date: June 7, 2018
    Applicant: Baker Hughes, a GE company, LLC
    Inventors: Prahlad Yadav, Mohammed Al-Rabah, Gaurav Agrawal
  • Publication number: 20180100390
    Abstract: A system and method for performing an operation at a wellbore is disclosed. A sample is obtained from a selected depth of the wellbore. A first test is performed on the sample to obtain a first estimate of mineralogy of the sample with a first degree of certainty. A second test is selected for the sample based on the first estimate of mineralogy. The second test is performed on the sample to obtain a second estimate of mineralogy having a second degree of certainty greater than the first degree of certainty. The operation is performed at the selected depth based on the second estimate of mineralogy.
    Type: Application
    Filed: December 4, 2017
    Publication date: April 12, 2018
    Applicant: Baker Hughes, a GE company, LLC
    Inventors: Umesh Santosh Patil, Gaurav Agrawal
  • Patent number: 9914072
    Abstract: The present disclosure provides for a process for supplying a first reactant and a second reactant (reactants) to a simulated moving bed reactor (SMBR) at each step of a sequential repeating injection cycle, where the SMBR includes zones each having an injection point and each containing a solid separation media; reacting the reactants in the SMBR during the sequential repeating injection cycle (cycle) to form a first product; separating the first product in the SMBR with the solid separation media; and changing an amount of one or both of the reactants injected at one or more of the injection points of the SMBR during a step of the cycle. Changing the amount of the reactants can be done at each step of the sequential repeating injection cycle. Changing the amount can include changing an inlet concentration of the reactants injected at one or more of the injection points during each step of the cycle.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: March 13, 2018
    Assignee: Georgia Tech Research Corporation
    Inventors: Yoshiaki Kawajiri, Andreas S. Bommarius, Jungmin Oh, Gaurav Agrawal, Balamurali Sreedhar
  • Publication number: 20180057947
    Abstract: A corrosion inhibitor for use in aqueous fluids, e.g. brine, which contact a metal surface, contains a blend or cross-linked reaction product of a main chain type polybenzoxazine (MCTPB) and a chitosan component selected from the group consisting of chitosan, chitosan glycol, and combinations thereof. The MCTPB can be made by reacting formaldehyde, bisphenol A, and tetraethylenepentamine (TEPA). The corrosion inhibitor may contain a small amount of an inorganic acid and/or an organic acid.
    Type: Application
    Filed: August 24, 2016
    Publication date: March 1, 2018
    Applicant: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Taher Bakr HAFIZ, Abdulaziz Abdulrhman ALMATHAMI, Gaurav AGRAWAL, Manuel HOEGERL
  • Patent number: 9878968
    Abstract: A process is described for separating paraxylene from a multicomponent fluid mixture of C8 aromatics. A mixture of C8 aromatics is fed to a simulated moving bed adsorptive apparatus having at least two sieve chambers and at least two rotary valves. Each sieve chamber may be operated individually using the PowerFeed process. The flow rates of the streams to or from the individual sieve chambers may be varied during the step time in an inverse manner such that a substantially constant flow to and from the apparatus is achieved. Alternatively, the flow rates to each sieve chamber may vary during the step time according to the same profile, but the rotary valves may be off-set and step independently in a staggered manner to achieve a substantially constant flow of a stream to or from the apparatus.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: January 30, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R. Porter, Michael W. Weber, Gaurav Agrawal
  • Patent number: 9879511
    Abstract: A method of obtaining a hydrocarbon material from a subterranean formation comprises forming a flooding suspension comprising degradable particles and a carrier fluid. The flooding suspension is introduced into a subterranean formation containing a hydrocarbon material to form an emulsion stabilized by the degradable particles and remove the emulsion from the subterranean formation. At least a portion of the degradable particles are degraded to destabilize the emulsion. An additional method of obtaining a hydrocarbon material from a subterranean formation, and a stabilized emulsion are also described.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: January 30, 2018
    Assignee: Baker Hughes Incorporated
    Inventors: Oleg A. Mazyar, Oleksandr V. Kuznetsov, Gaurav Agrawal, Michael H. Johnson, Valery N. Khabashesku
  • Patent number: 9873827
    Abstract: Suspensions comprising polyhedral oligomeric silsesquioxane nanoparticles and at least one carrier fluid. The polyhedral oligomeric silsesquioxane may include functional groups and the suspension may further comprise carbon-based nanoparticles and silica nanoparticles. Related methods of recovering hydrocarbons from a subterranean formation using the suspension. The method comprises contacting hydrocarbons with the suspension to form an emulsion stabilized by the polyhedral oligomeric silsesquioxane nanoparticles.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: January 23, 2018
    Assignee: Baker Hughes Incorporated
    Inventors: Soma Chakraborty, Gaurav Agrawal, Devesh Kumar Agrawal, Valery N. Khabashesku
  • Publication number: 20180002253
    Abstract: Disclosed herein are processes for recovering paraxylene in which a first simulated moving bed adsorption unit is used to produce a paraxylene-rich extract stream that also contains a significant amount of the ethylbenzene and a paraxylene-depleted raffinate stream. Because a significant amount of the ethylbenzene is removed in the paraxylene-rich extract stream (at least enough to limit buildup in the isomerization loop), the paraxylene-depleted raffinate stream may be isomerized in the liquid phase. Avoiding vapor phase isomerization saves energy and capital, as liquid phase isomerization requires less energy and capital than the vapor phase isomerization process due to the requirement of vaporizing the paraxylene-depleted stream and the use of hydrogen, which requires an energy- and capital-intensive hydrogen recycle loop.
    Type: Application
    Filed: May 19, 2017
    Publication date: January 4, 2018
    Inventors: Catherine M. Dorsi, Gaurav Agrawal, Michael W. Weber, Dana L. Pilliod, John R. Porter
  • Publication number: 20180002252
    Abstract: Disclosed is a process for recovering paraxylene in which a first simulated moving bed adsorption unit is used to produce two extract streams—one rich in paraxylene and a paraxylene-rich extract stream that is lean in ethylbenzene and an ethylbenzene-rich extract stream that is lean in paraxylene- and a paraxylene-depleted raffinate stream. A significant amount of the ethylbenzene is removed in the ethylbenzene-rich extract stream (at least enough to limit buildup in the isomerization loop), so the paraxylene-depleted raffinate stream may be isomerized in the liquid phase. Avoiding vapor phase isomerization saves energy and capital, as liquid phase isomerization requires less energy and capital than the vapor phase isomerization process due to the requirement of vaporizing the paraxylene-depleted stream and the use of hydrogen, which requires an energy and capital intensive hydrogen recycle loop.
    Type: Application
    Filed: May 19, 2017
    Publication date: January 4, 2018
    Inventors: Michael Salciccioli, Gaurav Agrawal, Michael W. Weber, Dana L. Pilliod, Catherine M. Dorsi
  • Patent number: 9850186
    Abstract: A process for producing paraxylene is provided. The process includes separating a first mixture of C8 aromatic hydrocarbons in a simulated moving bed apparatus using a desorbent to produce (i) an extract comprising ?50.0 wt % of the paraxylene in the first mixture; (ii) a desorbent-rich raffinate comprising ?75 wt % of the desorbent withdrawn, and (iii) an desorbent-lean raffinate comprising ?25 wt % of the desorbent withdrawn in the desorbent-rich and desorbent-lean raffinates. The desorbent-lean raffinate can then, without an intervening separation step, be passed to a refinery process or a vapor phase isomerization reaction to produce an effluent comprising paraxylene in a greater concentration than the desorbent-lean raffinate. The desorbent-rich raffinate can be passed to a liquid phase isomerization reaction to produce an effluent comprising paraxylene in a greater concentration than the desorbent-rich raffinate.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: December 26, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gaurav Agrawal, Michael W. Weber, Michael Salciccioli, John R. Porter, Dana L. Pilliod, Timothy P. Bender