Patents by Inventor Gene Bornzin

Gene Bornzin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210031028
    Abstract: Disclosed herein is a screw-in lead implantable in the pericardium of a patient heart and a system for delivering such leads to an implantation location. The leads include a helical tip electrode and a curvate body including a defibrillator coil with improved contact between the defibrillator coil and the patient heart. The delivery system includes a delivery catheter and lead receiving sheath disposed within the catheter. A fixation tine is disposed on one of the delivery catheter and the lead receiving sheath such that the delivery system may be anchored into the pericardium during fixation of the screw-in lead. In certain implementations, an implantable sleeve receives the leads to bias the defibrillator coil against the patient heart.
    Type: Application
    Filed: October 13, 2020
    Publication date: February 4, 2021
    Inventors: Gene A. Bornzin, Devan Hughes, Keith Victorine, Zoltan Somogyi, Matthew Nojoomi, Ekaterina Tkatchouk, Xiaoyi Min
  • Publication number: 20210015386
    Abstract: A computer implemented method and system for detecting arrhythmias in cardiac activity are provided. The method is under control of one or more processors configured with specific executable instructions. The method obtains far field cardiac activity (CA) signals and applies a direction related responsiveness (DRR) filter to the CA signals to produce DRR filtered signals. The method compares a current sample from the CA signals to a prior sample from the DRR filtered signals to identify a direction characteristic of the CA signals and defines the DRR filter based on a timing constant that is set based on the direction characteristic identified. The method analyzes the CA signals in connection with the DRR filtered signals to identify a peak characteristic of the CA signals and determines peak to peak intervals between successive peak characteristic. The method detects at least one of noise or an arrhythmia based on the peak to peak intervals and records results of the detecting.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 21, 2021
    Inventors: Gene A. Bornzin, Fady Dawoud, Jong Gill, Stuart Rosenberg, Fujian Qu, Neha Malhotra
  • Patent number: 10874322
    Abstract: A computer implemented method and system are provided for detecting premature ventricular contractions (PVCs) in cardiac activity. The method and system obtain cardiac activity (CA) signals for a series of beats, and, for at least a portion of the series of beats, calculate QRS scores for corresponding QRS complex segments from the CA signals. The method and system calculate a variability metric for QRS scores across the series of beats, calculate a QRS complex template using QRS segments from the series of beats, calculate correlation coefficients between the QRS complex template and the QRS complex segments, compare the variability metric to a variability threshold and the correlation coefficients to a correlation threshold, and designate the CA signals to include a predetermined level of PVC burden based on the comparing.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: December 29, 2020
    Assignee: PACESETTER, INC.
    Inventors: Jong Gill, Fujian Qu, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Patent number: 10856761
    Abstract: Methods and systems are provided for detecting arrhythmias in cardiac activity. The methods and systems declare a current beat, from the CA signals, to be a candidate beat or an ineligible beat based on whether the current beat satisfies the rate based selection criteria. The determining and declaring operations are repeated for multiple beats to form an ensemble of candidate beats. The method and system calculate a P-wave segment ensemble from the ensemble of candidate beats, perform a morphology-based comparison between the P-wave segment ensemble and at least one of a monophasic or biphasic template, declare a valid P-wave to be present within the CA signals based on the morphology-based comparison, and utilize the valid P-wave in an arrhythmia detection process to determine at least one of an arrhythmia entry, arrhythmia presence or arrhythmia exit.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: December 8, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Neha Malhotra, Fujian Qu, Jong Gill, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Publication number: 20200376284
    Abstract: A computer implemented method for determining heart arrhythmias based on cardiac activity that includes under control of one or more processors of an implantable medical device (IMD) configured with specific executable instructions to obtain far field cardiac activity (CA) signals at electrodes located remote from the heart, and obtain acceleration signatures, at an accelerometer of the IMD, indicative of heart sounds generated during the cardiac beats. The IMD is also configured with specific executable instructions to declare a candidate arrhythmia based on a characteristic of at least one R-R interval from the cardiac beats, and evaluate the acceleration signatures for ventricular events (VEs) to re-assess a presence or absence of at least one R-wave from the cardiac beats and based thereon confirming or denying the candidate arrhythmia.
    Type: Application
    Filed: May 29, 2019
    Publication date: December 3, 2020
    Inventors: Jong Gill, Gene A. Bornzin
  • Publication number: 20200376282
    Abstract: A computer implemented method and device for providing dual chamber sensing with a single chamber leadless implantable medical device (LIMD) are provided. The method is under control of one or more processors in the LIMD configured with specific executable instructions. The method obtains a far field (FF) cardiac activity (CA) signals for activity in a remote chamber of a heart and compares the far field CA signals to a P-wave template to identify an event of interest associated with the remote chamber.
    Type: Application
    Filed: May 29, 2019
    Publication date: December 3, 2020
    Inventors: Gene A. Bornzin, Nima Badie, Chunlan Jiang, David Ligon
  • Patent number: 10850108
    Abstract: Disclosed herein is a catheter for delivering an implantable medical lead to an implantation site near an ostium leading to a proximal region of a coronary sinus. The catheter includes a distal end, a proximal end opposite the distal end, a tubular body extending between the distal and proximal ends, an atraumatic fixation structure defining a distal termination of the distal end, and a lead receiving lumen. The atraumatic fixation structure is configured to enter the ostium and passively pivotally anchor with the proximal region of the coronary sinus. The lead receiving lumen extends along the tubular body from the proximal end to an opening defined in a side of the tubular body near the distal end and proximal the atraumatic fixation structure.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: December 1, 2020
    Assignee: PACESETTER, INC.
    Inventors: Wenwen Li, Gene A. Bornzin, Didier Theret, Luke A. McSpadden, Nima Badie
  • Patent number: 10850107
    Abstract: Systems and methods of performing cardio resynchronization therapy (CRT) on a patient heart include the use of a stimulation system having at least one processor, at least one memory, a pulse generator, a stimulating electrode disposed in proximity to a His bundle of the patient heart, and a sensing electrode adapted to sense electrical activity of the left ventricle (LV) of the patient heart. CRT is provided by applying, using the pulse generator and through the stimulating electrode, a His bundle pacing (HBP) impulse having a first impulse energy. The sensing electrode is then used to measure an LV activation time in response to the HBP impulse. At least one setting of the pulse generator is modified based on the LV activation time such that a subsequent HBP impulse may be provided by the pulse generator via the stimulating electrode using a modified impulse energy.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: December 1, 2020
    Assignee: PACESETTER, INC.
    Inventors: Wenwen Li, Gene A. Bornzin, Nima Badie, Stuart Rosenberg, Luke C. McSpadden, Kyungmoo Ryu
  • Publication number: 20200368536
    Abstract: A computer implemented method and system for labeling types of heart arrhythmias based on cardiac activity are provided. The method is under control of one or more processors of an implantable medical device (IMD) configured with specific executable instruction. The method obtains cardiac activity (CA) signals at electrodes of the IMD during cardiac beats, declares a ventricular tachycardia (VT) episode based on the CA signals and obtains acceleration signatures, at an accelerometer of the IMD, indicative of heart sounds generated during the cardiac beats. The method analyzes an S1 characteristic of interest (COI) from the acceleration signature to identify the VT episode as a stable or non-stable VT episode and labels the VT episode as stable or non-stable based on the analyzing operation.
    Type: Application
    Filed: May 20, 2019
    Publication date: November 26, 2020
    Inventors: Jong GILL, Gene A. BORNZIN
  • Publication number: 20200360688
    Abstract: A subcutaneous implantable medical device and method (SIMD) provided. A pulse generator (PG) is configured to be positioned subcutaneously within a lateral region of a chest of a patient. The PG has a housing that includes a PG electrode. The PG has an electronics module. An elongated lead is electrically coupled to the pulse generator. The elongated lead includes a first electrode that is configured to be positioned along a first parasternal region proximate a sternum of the patient and a second electrode that is configured to be positioned at an anterior region of the patient. The first and second electrodes are coupled to be electrically common with one another. The electronics module is configured to provide electrical shocks for antiarrhythmic therapy along at least one shocking vector between the PG electrode and the first and second electrodes.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventors: Xiaoyi Min, Kyungmoo Ryu, Keith Victorine, Stuart Rosenberg, Gene A. Bornzin
  • Patent number: 10835741
    Abstract: Disclosed herein is a screw-in lead implantable in the pericardium of a patient heart and a system for delivering such leads to an implantation location. The leads include a helical tip electrode and a curate body including a defibrillator coil with improved contact between the defibrillator coil and the patient heart. The delivery system includes a delivery catheter and lead receiving sheath disposed within the catheter. A fixation tine is disposed on one of the delivery catheter and the lead receiving sheath such that the delivery system may be anchored into the pericardium during fixation of the screw-in lead. In certain implementations, an implantable sleeve receives the leads to bias the defibrillator coil against the patient heart.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: November 17, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Gene A. Bornzin, Devan Hughes, Keith Victorine, Zoltan Somogyi, Matthew Nojoomi, Ekaterina Tkatchouk, Xiaoyi Min
  • Patent number: 10799135
    Abstract: A computer Implemented method and system for detecting arrhythmias in cardiac activity are provided. The method is under control of one or more processors configured with specific executable instructions. The method obtains far field cardiac activity (CA) signals and applies a direction related responsiveness (DRR) filter to the CA signals to produce DRR filtered signals. The method compares a current sample from the CA signals to a prior sample from the DRR filtered signals to identify a direction characteristic of the CA signals and defines the DRR filter based on a timing constant that is set based on the direction characteristic identified. The method analyzes the CA signals in connection with the DRR filtered signals to identify a peak characteristic of the CA signals and determines peak to peak intervals between successive peak characteristic. The method detects at least one of noise or an arrhythmia based on the peak to peak intervals and records results of the detecting.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: October 13, 2020
    Assignee: PACESETTER, INC.
    Inventors: Gene A. Bornzin, Fady Dawoud, Jong Gill, Stuart Rosenberg, Fujian Qu, Neha Malhotra
  • Publication number: 20200282226
    Abstract: A method and system for managing delivery of a respiration gated defibrillation shock from a subcutaneous implantable medical device (S-IMD) having one or more extra vascular electrodes. The method and system sense cardiac events of a heart. Additionally, the method and system utilize one or more processors to declare a shockable arrhythmia based on the cardiac events, obtain a respiration proxy signal indicative of respiration, track a respiration state related (RSR) characteristic from the respiration proxy signal, gate delivery of a high voltage (HV) shock based on occurrence of a respiration-gated (RG) trigger in connection with the RSR characteristic, and deliver the HV shock along a shocking vector between extra vascular electrodes based on the RG trigger to time delivering of the HV shock to occur during the select state within the respiration cycle.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 10, 2020
    Inventors: Stuart Rosenberg, Gene A. Bornzin, Wenwen Li
  • Patent number: 10765860
    Abstract: A subcutaneous implantable medical device and method (SIMD) provided. A pulse generator (PG) is configured to be positioned subcutaneously within a lateral region of a chest of a patient. The PG has a housing that includes a PG electrode. The PG has an electronics module. An elongated lead is electrically coupled to the pulse generator. The elongated lead includes a first electrode that is configured to be positioned along a first parasternal region proximate a sternum of the patient and a second electrode that is configured to be positioned at an anterior region of the patient. The first and second electrodes are coupled to be electrically common with one another. The electronics module is configured to provide electrical shocks for antiarrhythmic therapy along at least one shocking vector between the PG electrode and the first and second electrodes.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: September 8, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Kyungmoo Ryu, Keith Victorine, Stuart Rosenberg, Gene A. Bornzin
  • Publication number: 20200245886
    Abstract: A computer implemented method and system for confirming a device documented arrhythmia in cardiac activity are provided. The method is under control of one or more processors configured with executable instructions. The method obtains a cardiac activity (CA) data set that includes CA signals for a series of cardiac events and includes device documented (DD) markers within the series of cardiac events. The device documented markers are indicative of atrial fibrillation (AF) detected by the ICM utilizing an on-board R-R interval irregularity (ORI) process to analyze the CA signals. The method applies a feature enhancement function to the CA signals to form modified CA signals with enhanced sinus features and analyzes the enhanced sinus features in the modified CA signals. The method utilized a confirmatory feature detection process to identify false AF detection by the ORI process. The method records a result of the analysis identifying false AF detection by the ORI process.
    Type: Application
    Filed: April 22, 2020
    Publication date: August 6, 2020
    Inventors: Fujian Qu, Jong Gill, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Patent number: 10729346
    Abstract: A computer implemented method and system for confirming a device documented arrhythmia in cardiac activity are provided. The method is under control of one or more processors configured with executable instructions. The method obtains a cardiac activity (CA) data set that includes CA signals for a series of cardiac events and includes device documented (DD) markers within the series of cardiac events. The device documented markers are indicative of atrial fibrillation (AF) detected by the ICM utilizing an on-board R-R interval irregularity (ORI) process to analyze the CA signals. The method applies a feature enhancement function to the CA signals to form modified CA signals with enhanced sinus features and analyzes the enhanced sinus features in the modified CA signals. The method utilized a confirmatory feature detection process to identify false AF detection by the ORI process. The method records a result of the analysis identifying false AF detection by the ORI process.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: August 4, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Fujian Qu, Jong Gill, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Publication number: 20200237313
    Abstract: The present disclosure provides systems and methods for confirming cardiac events based on heart sounds. An implantable medical device includes a sensing component configured to acquire a signal, and a processing component communicatively coupled to the sensing component, the processing component configured to receive the signal from the sensing component, analyze the received signal to detect the presence or absence of at least one heart sound, and confirm whether an initial detection of a cardiac event is accurate based on the detected presence or absence of the at least one heart sound.
    Type: Application
    Filed: January 30, 2019
    Publication date: July 30, 2020
    Inventors: Jong Gill, Gene A. Bornzin, Stuart Rosenberg, Fujian Qu
  • Publication number: 20200206519
    Abstract: Methods and systems are provided that comprise: sensing cardiac events of a heart; utilizing one or more processors to perform: declaring a ventricular fibrillation (VF) episode based on the cardiac events charging a single charge storage capacitor; delivering a multi-phase VF therapy that includes phase I and phase II therapies, wherein: a) during the phase I therapy, a combination of two or more medium voltage (MV) shocks are delivered entirely from the single charge storage capacitor; and b) during the phase II therapy, a low voltage pulse train is delivered at least partially from the single charge storage capacitor.
    Type: Application
    Filed: December 20, 2019
    Publication date: July 2, 2020
    Inventors: Reza Shahandeh, Wenwen Li, Gene Bornzin, Gabriel Mouchawar, Alan Vogel, Kyungmoo Ryu
  • Patent number: 10661085
    Abstract: Methods and devices are provided for managing anti-tachycardia pacing therapy delivered by an implantable medical device (IMD). The methods and devices detect events from cardiac signals sensed at electrodes of the IMD. The cardiac signals represent a ventricular tachycardia (VT) episode that includes at least a select number of VT events having a corresponding VT cycle length. The methods and devices analyze the VT cycle length to define an anti-tachycardia pacing (ATP) therapy that includes a first coupling interval and deliver a first ATP pulse that is spaced the first coupling interval after a reference refractory VT event sensed at the electrodes. The methods and devices deliver a second ATP pulse following the first ATP pulse by a non-stimulation segment that is at least one and three-quarters (1.75) times a projected VT cycle length.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: May 26, 2020
    Assignee: Pacesetter, Inc.
    Inventor: Gene A. Bornzin
  • Publication number: 20200139130
    Abstract: Systems and methods of performing cardio resynchronization therapy (CRT) on a patient heart include the use of a stimulation system having at least one processor, at least one memory, a pulse generator, a stimulating electrode disposed in proximity to a His bundle of the patient heart, and a sensing electrode adapted to sense electrical activity of the left ventricle (LV) of the patient heart. CRT is provided by applying, using the pulse generator and through the stimulating electrode, a His bundle pacing (HBP) impulse having a first impulse energy. The sensing electrode is then used to measure an LV activation time in response to the HBP impulse. At least one setting of the pulse generator is modified based on the LV activation time such that a subsequent HBP impulse may be provided by the pulse generator via the stimulating electrode using a modified impulse energy.
    Type: Application
    Filed: November 5, 2018
    Publication date: May 7, 2020
    Inventors: Wenwen Li, Gene A. Bornzin, Nima Badie, Stuart Rosenberg, Luke C. McSpadden, Kyungmoo Ryu