Patents by Inventor Gene Bornzin

Gene Bornzin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10610690
    Abstract: A fully implantable trial neurostimulation system for implant within a patient is provided that includes one or more leads equipped to deliver neurostimulation to patient tissues under the control of a trial neurostimulation control device designed as a capsule for removable implant within the patient. The control capsule is provided with minimal components to power and control the delivery of neurostimulation during a trial evaluation period and is shaped and configured to facilitate removal from the patient following completion of the trial period. In some examples, both the lead and the trial control capsule are removed from the patient following the trial period for replacement with a chronic or long-term neurostimulation system (assuming further neurostimulation is warranted.) In other examples, the lead remains within the patient and the trial control capsule is replaced with a long-term neurostimulation controller device. Various minimally-intrusive implantation procedures are also described.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: April 7, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Yelena Nabutovsky, Melanie Goodman Keiser, Gene A. Bornzin
  • Patent number: 10610126
    Abstract: The present disclosure provides systems and methods for retrieving an implantable device. An implantable device includes a casing, and a marker coupled to the casing, wherein the marker includes a detectable material encased in a biocompatible material, and wherein the marker facilitates accurately locating and retrieving the implantable device after implantation in a patient.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: April 7, 2020
    Assignee: PACESETTER, INC.
    Inventors: Gene A. Bornzin, Didier Theret, Zoltan Somogyi
  • Publication number: 20200046991
    Abstract: The present disclosure provides systems and methods for applying anti-tachycardia pacing (ATP) using subcutaneous implantable cardioverter-defibrillators (SICDs). An SICD implantable in a subject includes a case including a controller, and at least one conductive lead extending from the case. The at least one conductive lead includes a plurality of coil electrodes, wherein the SICD is configured, via the controller, to apply anti-tachycardia pacing (ATP) to the subject using the at least one conductive lead.
    Type: Application
    Filed: August 7, 2018
    Publication date: February 13, 2020
    Inventors: Gene A. Bornzin, Xiaoyi Min, Wenwen Li, Stuart Rosenberg, Kyungmoo Ryu, Alexander Bornzin, Leyla Sabet, Shubha Asopa, Xing Pei
  • Publication number: 20200046245
    Abstract: A method and system are provided for detecting arrhythmias in cardiac activity. The method the method and system, under control of one or more processors configured with specific executable instructions, obtain cardiac activity (CA) signals for a series of beats, build a QRS-T template based on an ensemble of QRS complexes within the CA signals, and subtract the QRS-T template from the CA signals to obtain QRS-T scrubbed CA signals. The method and system determine an atrial flutter (AFL) timing feature within the QRS scrubbed CA signals, and declare an AFL episode based on a relation between the AFL timing feature and an AFL cluster criteria.
    Type: Application
    Filed: August 8, 2018
    Publication date: February 13, 2020
    Inventors: Fujian Qu, Gene A. Bornzin, Jong Gill, Stuart Rosenberg, Neha Malhotra
  • Publication number: 20190380610
    Abstract: A computer Implemented method and system for detecting arrhythmias in cardiac activity are provided. The method is under control of one or more processors configured with specific executable instructions. The method obtains far field cardiac activity (CA) signals and applies a direction related responsiveness (DRR) filter to the CA signals to produce DRR filtered signals. The method compares a current sample from the CA signals to a prior sample from the DRR filtered signals to identify a direction characteristic of the CA signals and defines the DRR filter based on a timing constant that is set based on the direction characteristic identified. The method analyzes the CA signals in connection with the DRR filtered signals to identify a peak characteristic of the CA signals and determines peak to peak intervals between successive peak characteristic. The method detects at least one of noise or an arrhythmia based on the peak to peak intervals and records results of the detecting.
    Type: Application
    Filed: June 13, 2018
    Publication date: December 19, 2019
    Inventors: Gene A. Bornzin, Fady Dawoud, Jong Gill, Stuart Rosenberg, Fujian Qu, Neha Malhotra
  • Publication number: 20190336025
    Abstract: A computer implemented method and system for confirming a device documented arrhythmia in cardiac activity are provided. The method is under control of one or more processors configured with executable instructions. The method obtains a cardiac activity (CA) data set that includes CA signals for a series of cardiac events and includes device documented (DD) markers within the series of cardiac events. The device documented markers are indicative of atrial fibrillation (AF) detected by the ICM utilizing an on-board R-R interval irregularity (ORI) process to analyze the CA signals. The method applies a feature enhancement function to the CA signals to form modified CA signals with enhanced sinus features and analyzes the enhanced sinus features in the modified CA signals. The method utilized a confirmatory feature detection process to identify false AF detection by the ORI process. The method records a result of the analysis identifying false AF detection by the ORI process.
    Type: Application
    Filed: May 7, 2018
    Publication date: November 7, 2019
    Applicant: Pacesetter, Inc.
    Inventors: Fujian Qu, Jong Gill, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Publication number: 20190336753
    Abstract: A subcutaneous implantable medical device and method (SIMD) provided. A pulse generator (PG) is configured to be positioned subcutaneously within a lateral region of a chest of a patient. The PG has a housing that includes a PG electrode. The PG has an electronics module. An elongated lead is electrically coupled to the pulse generator. The elongated lead includes a first electrode that is configured to be positioned along a first parasternal region proximate a sternum of the patient and a second electrode that is configured to be positioned at an anterior region of the patient. The first and second electrodes are coupled to be electrically common with one another. The electronics module is configured to provide electrical shocks for antiarrhythmic therapy along at least one shocking vector between the PG electrode and the first and second electrodes.
    Type: Application
    Filed: May 7, 2018
    Publication date: November 7, 2019
    Applicant: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Kyungmoo Ryu, Keith Victorine, Stuart Rosenberg, Gene A. Bornzin
  • Publication number: 20190336032
    Abstract: A computer implemented method and system are provided for detecting premature ventricular contractions (PVCs) in cardiac activity. The method and system obtain cardiac activity (CA) signals for a series of beats, and, for at least a portion of the series of beats, calculate QRS scores for corresponding QRS complex segments from the CA signals. The method and system calculate a variability metric for QRS scores across the series of beats, calculate a QRS complex template using QRS segments from the series of beats, calculate correlation coefficients between the QRS complex template and the QRS complex segments, compare the variability metric to a variability threshold and the correlation coefficients to a correlation threshold, and designate the CA signals to include a predetermined level of PVC burden based on the determining.
    Type: Application
    Filed: May 7, 2018
    Publication date: November 7, 2019
    Inventors: Jong Gill, Fujian Qu, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Publication number: 20190336083
    Abstract: Computer implemented methods and systems for detecting noise in cardiac activity are provided. The method and system obtain a far field cardiac activity (CA) data set that includes far field CA signals for a series of beats, overlay a segment of the CA signals with a noise search window, and identify turns in the segment of the CA signals. The method and system determine whether the turns exhibit a turn characteristic that exceed a turn characteristic threshold, declare the segment of the CA signals as a noise segment based on the determining operation, shift the noise search window to a next segment of the CA signal and repeat the identifying, determining and declaring operations; and modify the CA signals based on the declaring the noise segments.
    Type: Application
    Filed: May 7, 2018
    Publication date: November 7, 2019
    Inventors: Jong Gill, Fujian Qu, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Publication number: 20190336747
    Abstract: Methods and devices include making an incision at a single site of a patient. The single site located at an anterior of a chest or abdomen. The method also includes inserting a tunneling tool through the incision at the single site and preparing a first tunnel to a subcutaneous posterior location. A path of the first tunnel at least one of i) extends over a plurality of Intercostal gaps of the chest or ii) extends along and within one of the intercostal gaps. The method also includes positioning a first lead having an electrode within the first tunnel and preparing a second tunnel to a subcutaneous parasternal location along the chest. The method also includes positioning a second lead having an electrode within the second tunnel and positioning a pulse generator within a subcutaneous pocket and operatively coupling the first and second leads to the pulse generator.
    Type: Application
    Filed: May 7, 2018
    Publication date: November 7, 2019
    Applicant: Pacesetter, Inc.
    Inventors: Avi Fischer, Xiaoyi Min, Kyungmoo Ryu, Gene A. Bornzin, Keith Victorine, Stuart Rosenberg, Shubha Asopa
  • Publication number: 20190336031
    Abstract: Methods and systems are provided for detecting arrhythmias in cardiac activity. The methods and systems declare a current beat, from the CA signals, to be a candidate beat or an ineligible beat based on whether the current beat satisfies the rate based selection criteria. The determining and declaring operations are repeated for multiple beats to form an ensemble of candidate beats. The method and system calculate a P-wave segment ensemble from the ensemble of candidate beats, perform a morphology-based comparison between the P-wave segment ensemble and at least one of a monophasic or biphasic template, declare a valid P-wave to be present within the CA signals based on the morphology-based comparison, and utilize the valid P-wave in an arrhythmia detection process to determine at least one of an arrhythmia entry, arrhythmia presence or arrhythmia exit.
    Type: Application
    Filed: May 7, 2018
    Publication date: November 7, 2019
    Applicant: Pacesetter, Inc.
    Inventors: Neha Malhotra, Fujian Qu, Jong Gill, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Publication number: 20190336026
    Abstract: Computer implemented methods and systems for detecting arrhythmias in cardiac activity are provided. The method is under control of one or more processors configured with specific executable instructions. The method obtains a far field cardiac activity (CA) data set that includes far field CA signals for beats. The method applies a feature enhancement function to the CA signals to form an enhanced feature in the CA data set. The method calculates an adaptive sensitivity level and sensitivity limit based on the enhanced feature from one or more beats within the CA data set and automatically iteratively analyzes a beat segment of interest by comparing the beat segment of interest to the current sensitivity level to determine whether one or more R-waves are present within the beat segment of interest.
    Type: Application
    Filed: May 7, 2018
    Publication date: November 7, 2019
    Inventors: Fady Dawoud, Fujian Qu, Stuart Rosenberg, Gene A. Bornzin, Jong Gill, Neha Malhotra, Xiaoyi Min
  • Patent number: 10413325
    Abstract: The present disclosure provides systems and methods for implanting an implantable cardiac monitor. An injection system includes an implantable cardiac monitor (ICM), a plunger, a plunger handle coupled the plunger, and an injector housing. The injector housing includes a tube extending from a first end of the injector housing to a second end of the injector housing, the tube configured to receive the ICM and the plunger, and at least one leaflet formed at the second end of the injector housing, the at least one leaflet configured to rotate outward when a user operates the plunger handle to push the ICM through the injector housing second end via the plunger.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: September 17, 2019
    Assignee: PACESETTER, INC.
    Inventors: Abigail Valbuena, Gene A. Bornzin, Zoltan Somogyi, Didier Theret
  • Patent number: 10376310
    Abstract: A renal denervation feedback method is described that performs a baseline measurement of renal nerve plexus electrical activity at a renal vessel; denervates at least some tissue proximate the renal vessel after performing the baseline measurement; performs a post-denervation measurement of renal nerve plexus electrical activity at the renal vessel, after the denervating; and assesses denervation of the renal vessel based on a comparison of the baseline measurement and the post-denervation measurement of renal nerve plexus electrical activity at the renal vessel.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: August 13, 2019
    Assignee: Pacesetter, Inc.
    Inventors: Eric S. Fain, Martin Cholette, Gary R. Dulak, Gene A. Bornzin, John W. Poore
  • Patent number: 10376689
    Abstract: The present disclosure generally relates to extraforaminal electrical stimulation systems and leads for electrical stimulation of the dorsal root and dorsal root ganglion (DRG), minimally invasive implantation methods therefore, and related methods of providing extraforaminal electrical stimulation of the dorsal root and DRG for the treatment of a medical condition. In accordance with certain aspects, the extraforaminal electrical stimulation leads and methods are particularly suited for stimulation of dorsal roots and DRG of the cervical and thoracic spine.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: August 13, 2019
    Assignee: PACESETTER, INC.
    Inventors: Alexander Kent, William Cusack, Xiaoyi Min, Gene A. Bornzin
  • Publication number: 20190231219
    Abstract: The present disclosure provides systems and methods for retrieving an implantable device. An implantable device includes a casing, and a marker coupled to the casing, wherein the marker includes a detectable material encased in a biocompatible material, and wherein the marker facilitates accurately locating and retrieving the implantable device after implantation in a patient.
    Type: Application
    Filed: April 11, 2019
    Publication date: August 1, 2019
    Inventors: Gene A. Bornzin, Didier Theret, Zoltan Somogyi
  • Patent number: 10315034
    Abstract: The present disclosure provides a spinal cord stimulation (SCS) system. The system includes at least one SCS lead including a lead body, at least one distal electrode located at a distal end of the lead body, the at least one distal electrode configured to apply electrical stimulation to a stimulation target of a patient, and a pain reduction assembly coupled to the lead body and configured to reduce post-operation pain at an incision site associated with implantation of the at least one SCS lead. The system further includes a pulse generator coupled to the at least one SCS lead and configured to control electrical stimulation delivered to the patient via the at least one SCS lead.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: June 11, 2019
    Assignee: PACESETTER, INC.
    Inventors: Wenbo Hou, Alexander Kent, Edward Karst, Gene A. Bornzin, Riddhi Shah, Caroline Jordan, Yelena Nabutovsky
  • Publication number: 20190167993
    Abstract: Methods and devices are provided for managing anti-tachycardia pacing therapy delivered by an implantable medical device (IMD). The methods and devices detect events from cardiac signals sensed at electrodes of the IMD. The cardiac signals represent a ventricular tachycardia (VT) episode that includes at least a select number of VT events having a corresponding VT cycle length. The methods and devices analyze the VT cycle length to define an anti-tachycardia pacing (ATP) therapy that includes a first coupling interval and deliver a first ATP pulse that is spaced the first coupling interval after a reference refractory VT event sensed at the electrodes. The methods and devices deliver a second ATP pulse following the first ATP pulse by a non-stimulation segment that is at least one and three-quarters (1.75) times a projected VT cycle length.
    Type: Application
    Filed: December 1, 2017
    Publication date: June 6, 2019
    Inventor: Gene A. Bornzin
  • Patent number: 10292621
    Abstract: The present disclosure provides systems and methods for retrieving an implantable device. An implantable device includes a casing, and a marker coupled to the casing, wherein the marker includes a detectable material encased in a biocompatible material, and wherein the marker facilitates accurately locating and retrieving the implantable device after implantation in a patient.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: May 21, 2019
    Assignee: PACESETTER, INC.
    Inventors: Gene A. Bornzin, Didier Theret, Zoltan Somogyi
  • Publication number: 20190117168
    Abstract: The present disclosure provides systems and methods for classifying signals of interest in a cardiac rhythm management (CRM) device. A CRM device includes an intrinsic activation sensing circuit configured to pass signals falling within a first passband, a crosstalk sensing circuit configured to pass signals falling within a second passband, wherein the second passband contains higher frequencies than the first passband, and a computing device communicatively coupled to the intrinsic activation sensing circuit and the crosstalk sensing circuit, the computing device configured to classify a signal of interest as one of an intrinsic activation signal and a crosstalk signal based on whether the signal of interest is passed by the intrinsic activation sensing circuit and the crosstalk sensing circuit.
    Type: Application
    Filed: December 17, 2018
    Publication date: April 25, 2019
    Inventors: Matthew G. Fishler, Gene A. Bornzin, Benjamin T. Persson, Kenneth J. Carroll