Patents by Inventor Geng Wang

Geng Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9397152
    Abstract: A semiconductor capacitor and method of fabrication is disclosed. A MIM stack, having alternating first-type and second-type metal layers (each separated by dielectric) is formed in a deep cavity. The entire stack can be planarized, and then patterned to expose a first area, and selectively etched to recess all first metal layers within the first area. A second selective etch is performed to recess all second metal layers within a second area. The etched recesses can be backfilled with dielectric. Separate electrodes can be formed; a first electrode formed in said first area and contacting all of said second-type metal layers and none of said first-type metal layers, and a second electrode formed in said second area and contacting all of said first-type metal layers and none of said second-type metal layers.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: July 19, 2016
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Patent number: 9391204
    Abstract: After forming a first-side epitaxial semiconductor region and a second-side epitaxial semiconductor region on recessed surfaces of a semiconductor portion that are not covered by a gate structure, at least one dielectric layer is formed to cover the first-side and the second-side epitaxial semiconductor regions and the gate structure. A second-side contact opening is formed within the at least one dielectric layer to expose an entirety of the second-side epitaxial semiconductor region. The exposed second-side epitaxial semiconductor region can be replaced by a new second-side epitaxial semiconductor region having a composition different from the first-side epitaxial semiconductor region or can be doped by additional dopants, thus creating an asymmetric first-side epitaxial semiconductor region and a second-side epitaxial semiconductor region. Each of the first-side epitaxial semiconductor region and the second-side epitaxial semiconducting region can function as either a source or a drain for a transistor.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: July 12, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Joseph Ervin, Juntao Li, Chengwen Pei, Geng Wang
  • Publication number: 20160188178
    Abstract: A display processing method that is applied in a portable mobile terminal, to display multiple objects on a touch screen of the portable mobile terminal. The method includes obtaining a touch point that is a point created when an operating object contacts/almost touches the touch screen; determining a preset area with the touch point being the center; determining a first object and a second object, among multiple objects, each intersecting with the preset area on at least one point; determining a first information of the movement of the first object, the first information indicating moving the first object from a first position to a second position, the first position being the original position of the first object displayed on the touch screen; and moving the first object from the first position to the second position according to the first information.
    Type: Application
    Filed: September 21, 2011
    Publication date: June 30, 2016
    Inventors: Geng Wang, Ran Sun
  • Patent number: 9379177
    Abstract: A deep trench capacitor structure including an SOI substrate comprising an SOI layer, a rare earth oxide layer, and a bulk substrate, the rare earth oxide layer is located below the SOI layer and above the bulk substrate, and the rare earth oxide layer insulates the SOI layer from the bulk substrate, and a deep trench capacitor extending from a top surface of the SOI layer, through the rare earth oxide layer, down to a location within the bulk substrate, the rare earth oxide layer contacts the deep trench capacitor at an interface between the rare earth oxide layer and the bulk substrate forming an incline away from the deep trench capacitor.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: June 28, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Publication number: 20160181164
    Abstract: An approach to forming fins for a semiconductor device on a silicon-on-insulator wafer. The approach includes depositing a layer of mandrel material and etching the layer of mandrel material to form a mandrel. The approach includes depositing a layer of a dielectric material on the semiconductor layer and around the mandrel and etching the layer of the dielectric material to form one or more spacers next to the sidewalls of the mandrel, followed by removing the mandrel. Additionally, the approach includes depositing a layer of amorphous semiconductor material around said one or more spacers and heating it to transform into a layer of re-crystallized semiconductor material through solid phase epitaxy. Furthermore, the approach includes removing portions of the layer of re-crystallized semiconductor material from each of the horizontal surfaces of the silicon-on-insulator wafer including the area where the one or more spacers were removed to form one or more fins.
    Type: Application
    Filed: December 18, 2014
    Publication date: June 23, 2016
    Inventors: Kangguo Cheng, Joseph Ervin, Juntao Li, Chengwen Pei, Geng Wang
  • Publication number: 20160172314
    Abstract: A semiconductor structure is provided that includes a semiconductor on insulator (SOI) substrate comprising a bottom semiconductor layer, an epitaxial semiconductor layer present on the bottom semiconductor layer, a buried insulator layer present on the epitaxial semiconductor layer, and a top semiconductor layer present on the buried insulator layer. A deep trench moat (DTMOAT) is disposed in the SOI substrate and has a bottom surface contacting a dopant region of the bottom semiconductor layer. A moat contact electrically connecting the DTMOAT to the epitaxial semiconductor layer of the SOI substrate. Charges accumulated in the DTMOAT can be discharged through the heavily doped epitaxial semiconductor layer to ground, thus preventing the DTMOAT failure caused by the process-induced charge accumulation.
    Type: Application
    Filed: December 11, 2014
    Publication date: June 16, 2016
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Kangguo Cheng, Joseph Ervin, Juntao Li, Chengwen Pei, Geng Wang
  • Patent number: 9343320
    Abstract: Dummy deep trenches can be formed within a logic device region in which logic devices are to be formed while deep trench capacitors are formed within a memory device region. Semiconductor fins are formed over a top surface prior to forming trenches, and disposable material is filled around said semiconductor fins. A top surface of said disposable filler material layer can be coplanar with a top surface of said semiconductor fins, which eases deep trench formation. Conductive material portions of the dummy deep trenches can be recessed to avoid electrical contact with semiconductor fins within the logic device region, while an inner electrode of each deep trench can contact a semiconductor fin within the memory device region. A dielectric material portion can be formed above each conductive material portion of a dummy deep trench.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: May 17, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Kangguo Cheng, Joseph Ervin, Juntao Li, Chengwen Pei, Geng Wang
  • Publication number: 20160133631
    Abstract: A high-k dielectric metal trench capacitor and improved isolation and methods of manufacturing the same is provided. The method includes forming at least one deep trench in a substrate, and filling the deep trench with sacrificial fill material and a poly material. The method further includes continuing with CMOS processes, comprising forming at least one transistor and back end of line (BEOL) layer. The method further includes removing the sacrificial fill material from the deep trenches to expose sidewalls, and forming a capacitor plate on the exposed sidewalls of the deep trench. The method further includes lining the capacitor plate with a high-k dielectric material and filling remaining portions of the deep trench with a metal material, over the high-k dielectric material. The method further includes providing a passivation layer on the deep trench filled with the metal material and the high-k dielectric material.
    Type: Application
    Filed: January 19, 2016
    Publication date: May 12, 2016
    Inventors: Roger A. BOOTH, JR., Kangguo CHENG, Joseph ERVIN, Chengwen PEI, Ravi M. TODI, Geng WANG
  • Publication number: 20160126305
    Abstract: A semiconductor capacitor and method of fabrication is disclosed. A MIM stack, having alternating first-type and second-type metal layers (each separated by dielectric) is formed in a deep cavity. The entire stack can be planarized, and then patterned to expose a first area, and selectively etched to recess all first metal layers within the first area. A second selective etch is performed to recess all second metal layers within a second area. The etched recesses can be backfilled with dielectric. Separate electrodes can be formed; a first electrode formed in said first area and contacting all of said second-type metal layers and none of said first-type metal layers, and a second electrode formed in said second area and contacting all of said first-type metal layers and none of said second-type metal layers.
    Type: Application
    Filed: September 11, 2015
    Publication date: May 5, 2016
    Inventors: Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Publication number: 20160116435
    Abstract: A nanoscale electrode device can be fabricated by forming a pair of semiconductor fins laterally spaced from each other by a uniform distance and formed on a substrate. The pair of semiconductor fins can function as a pair of electrodes that can be biased to detect the leakage current through a nanoscale string to pass therebetween. A nanochannel having a uniform separation distance is formed between the pair of semiconductor fins. The nanochannel may be defined by a gap between a pair of raised active regions formed on the pair of semiconductor fins, or between proximal sidewalls of the pair of semiconductor fins. An opening is formed through the portion of the substrate underlying the region of the nanochannel to enable passing of a nanoscale string.
    Type: Application
    Filed: January 4, 2016
    Publication date: April 28, 2016
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Kangguo Cheng, Joseph Ervin, Juntao Li, Chengwen Pei, Geng Wang
  • Patent number: 9293520
    Abstract: A semiconductor structure is provided that includes a material stack including an epitaxially grown semiconductor layer on a base semiconductor layer, a dielectric layer on the epitaxially grown semiconductor layer, and an upper semiconductor layer present on the dielectric layer. A capacitor is present extending from the upper semiconductor layer through the dielectric layer into contact with the epitaxially grown semiconductor layer. The capacitor includes a node dielectric present on the sidewalls of the trench and an upper electrode filling at least a portion of the trench. A substrate contact is present in a contact trench extending from the upper semiconductor layer through the dielectric layer and the epitaxially semiconductor layer to a doped region of the base semiconductor layer. A substrate contact is also provided that contacts the base semiconductor layer through the sidewall of a trench. Methods for forming the above-described structures are also provided.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: March 22, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Geng Wang, Roger A. Booth, Jr., Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi
  • Patent number: 9287272
    Abstract: A high-k dielectric metal trench capacitor and improved isolation and methods of manufacturing the same is provided. The method includes forming at least one deep trench in a substrate, and filling the deep trench with sacrificial fill material and a poly material. The method further includes continuing with CMOS processes, comprising forming at least one transistor and back end of line (BEOL) layer. The method further includes removing the sacrificial fill material from the deep trenches to expose sidewalls, and forming a capacitor plate on the exposed sidewalls of the deep trench. The method further includes lining the capacitor plate with a high-k dielectric material and filling remaining portions of the deep trench with a metal material, over the high-k dielectric material. The method further includes providing a passivation layer on the deep trench filled with the metal material and the high-k dielectric material.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: March 15, 2016
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Patent number: 9257433
    Abstract: A memory device is provided including a semiconductor on insulator (SOI) substrate including a first semiconductor layer atop a buried dielectric layer, wherein the buried dielectric layer is overlying a second semiconductor layer. A capacitor is present in a trench, wherein the trench extends from an upper surface of the first semiconductor layer through the buried dielectric layer and extends into the second semiconductor layer. A protective oxide is present in a void that lies adjacent the first semiconductor layer, and a pass transistor is present atop the semiconductor on insulator substrate in electrical communication with the capacitor.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: February 9, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Herbert L. Ho, Naoyoshi Kusaba, Karen A. Nummy, Carl J. Radens, Ravi M. Todi, Geng Wang
  • Patent number: 9238041
    Abstract: Disclosed herein are methods of manipulating the processing, targeting, and/or internalization of a nucleic acid molecule. Also disclosed are recombinant and/or isolated nucleic acid molecules having a first nucleic acid sequence, which is a wild-type sequence or an altered sequence, directly or indirectly linked to a second nucleic acid sequence which is a mitochondria localization sequence, an RNA import sequence, or a combination thereof, and methods of using thereof.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: January 19, 2016
    Assignee: The Regents of the University of California
    Inventors: Michael A. Teitell, Carla M. Koehler, Geng Wang
  • Patent number: 9240354
    Abstract: A semiconductor-on-insulator (SOI) substrate comprises a bulk semiconductor substrate, a buried insulator layer formed on the bulk substrate and an active semiconductor layer formed on the buried insulator layer. Impurities are implanted near the interface of the buried insulator layer and the active semiconductor layer. A diffusion barrier layer is formed between the impurities and an upper surface of the active semiconductor layer. The diffusion barrier layer prevents the impurities from diffusing therethrough.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: January 19, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Gregory G. Freeman, Kam Leung Lee, Chengwen Pei, Geng Wang, Yanli Zhang
  • Patent number: 9240482
    Abstract: A stressor structure is formed within a drain region of an access transistor in a dynamic random access memory (DRAM) cell in a semiconductor-on-insulator (SOI) substrate without forming any stressor structure in a source region of the DRAM cell. The stressor structure induces a stress gradient within the body region of the access transistor, which induces a greater leakage current at the body-drain junction than at the body-source junction. The body potential of the access transistor has a stronger coupling to the drain voltage than to the source voltage. An asymmetric etch of a gate dielectric cap, application of a planarization material layer, and a non-selective etch of the planarization material layer and the gate dielectric cap can be employed to form the DRAM cell.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: January 19, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ravi K. Dasaka, Shreesh Narasimha, Ahmed Nayaz Noemaun, Karen A. Nummy, Katsunori Onishi, Paul C. Parries, Chengwen Pei, Geng Wang, Bidan Zhang
  • Patent number: 9228994
    Abstract: A nanoscale electrode device can be fabricated by forming a pair of semiconductor fins laterally spaced from each other by a uniform distance and formed on a substrate. The pair of semiconductor fins can function as a pair of electrodes that can be biased to detect the leakage current through a nanoscale string to pass therebetween. A nanochannel having a uniform separation distance is formed between the pair of semiconductor fins. The nanochannel may be defined by a gap between a pair of raised active regions formed on the pair of semiconductor fins, or between proximal sidewalls of the pair of semiconductor fins. An opening is formed through the portion of the substrate underlying the region of the nanochannel to enable passing of a nanoscale string.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: January 5, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Kangguo Cheng, Joseph Ervin, Juntao Li, Chengwen Pei, Geng Wang
  • Patent number: 9224801
    Abstract: An improved semiconductor capacitor and method of fabrication is disclosed. A MIM stack, comprising alternating first-type and second-type metal layers (each separated by dielectric) is formed in a deep cavity. The entire stack can be planarized, and then patterned to expose a first area, and selectively etched to recess all first metal layers within the first area. A second selective etch is performed to recess all second metal layers within a second area. The etched recesses can be backfilled with dielectric. Separate electrodes can be formed; a first electrode formed in said first area and contacting all of said second-type metal layers and none of said first-type metal layers, and a second electrode formed in said second area and contacting all of said first-type metal layers and none of said second-type metal layers.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: December 29, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Patent number: 9209200
    Abstract: A method for forming a semiconductor device includes forming gate stacks on a crystalline semiconductor layer; depositing a spacer layer over a top and sidewalls of the gate stacks; recessing the semiconductor layer between the gates stacks; and depositing a non-conformal layer over the gates stacks and within the recesses such that the non-conformal layer forms a pinch point over the recesses. The non-conformal layer is etched at a bottom of the recesses through the pinch point to expose the semiconductor layer. Dopant species are implanted at the bottom of the recesses through the pinch point in the semiconductor layer. The non-conformal layer is stripped, and source and drain material is grown in the recesses. The dopant species are activated to form PN junctions to act as a junction butt between portions of the semiconductor layer.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: December 8, 2015
    Assignee: GLOBALFOUNDRIES INC
    Inventors: Edward P. Maciejewski, Chengwen Pei, Gan Wang, Geng Wang
  • Publication number: 20150348974
    Abstract: The present invention relates generally to semiconductor devices and more particularly, to a structure and method of forming a junction butting region using low energy ion implantation to reduce parasitic leakage and body-to-body leakage between adjacent FETs that share a common contact in high density memory technologies, such as dynamic random access memory (DRAM) devices and embedded DRAM (eDRAM) devices. A method disclosed may include forming a junction butting region at the bottom of a trench formed in a semiconductor on insulator (SOI) layer using low energy ion implantation and protecting adjacent structures from damage from ion scattering using a protective layer.
    Type: Application
    Filed: August 7, 2015
    Publication date: December 3, 2015
    Inventors: Shreesh Narasimha, Katsunori Onishi, Paul C. Parries, Chengwen Pei, Geng Wang