Patents by Inventor Geng Wang

Geng Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9029862
    Abstract: A trench is formed in a semiconductor substrate, and is filled with a node dielectric layer and at least one conductive material fill portion that functions as an inner electrode. The at least one conductive material fill portion includes a doped polycrystalline semiconductor fill portion. A gate stack for an access transistor is formed on the semiconductor substrate, and a gate spacer is formed around the gate stack. A source/drain trench is formed between an outer sidewall of the gate spacer and a sidewall of the doped polycrystalline semiconductor fill portion. An epitaxial source region and a polycrystalline semiconductor material portion are simultaneously formed by a selective epitaxy process such that the epitaxial source region and the polycrystalline semiconductor material portion contact each other without a gap therebetween. The polycrystalline semiconductor material portion provides a robust low resistance conductive path between the source region and the inner electrode.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: May 12, 2015
    Assignee: International Business Machines Corporation
    Inventors: Karen A. Nummy, Chengwen Pei, Werner A. Rausch, Geng Wang
  • Publication number: 20150108571
    Abstract: A method for forming a semiconductor device includes forming gate stacks on a crystalline semiconductor layer; depositing a spacer layer over a top and sidewalls of the gate stacks; recessing the semiconductor layer between the gates stacks; and depositing a non-conformal layer over the gates stacks and within the recesses such that the non-conformal layer forms a pinch point over the recesses. The non-conformal layer is etched at a bottom of the recesses through the pinch point to expose the semiconductor layer. Dopant species are implanted at the bottom of the recesses through the pinch point in the semiconductor layer. The non-conformal layer is stripped, and source and drain material is grown in the recesses. The dopant species are activated to form PN junctions to act as a junction butt between portions of the semiconductor layer.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 23, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Edward P. Maciejewski, Chengwen Pei, Gan Wang, Geng Wang
  • Publication number: 20150054130
    Abstract: An improved semiconductor capacitor and method of fabrication is disclosed. A MIM stack, comprising alternating first-type and second-type metal layers (each separated by dielectric) is formed in a deep cavity. The entire stack can be planarized, and then patterned to expose a first area, and selectively etched to recess all first metal layers within the first area. A second selective etch is performed to recess all second metal layers within a second area. The etched recesses can be backfilled with dielectric. Separate electrodes can be formed; a first electrode formed in said first area and contacting all of said second-type metal layers and none of said first-type metal layers, and a second electrode formed in said second area and contacting all of said first-type metal layers and none of said second-type metal layers.
    Type: Application
    Filed: November 4, 2014
    Publication date: February 26, 2015
    Inventors: Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Publication number: 20150056760
    Abstract: A semiconductor-on-insulator (SOI) substrate comprises a bulk semiconductor substrate, a buried insulator layer formed on the bulk substrate and an active semiconductor layer formed on the buried insulator layer. Impurities are implanted near the interface of the buried insulator layer and the active semiconductor layer. A diffusion barrier layer is formed between the impurities and an upper surface of the active semiconductor layer. The diffusion barrier layer prevents the impurities from diffusing therethrough.
    Type: Application
    Filed: October 21, 2014
    Publication date: February 26, 2015
    Inventors: Gregory G. Freeman, Kam Leung Lee, Chengwen Pei, Geng Wang, Yanli Zhang
  • Patent number: 8962423
    Abstract: An improved semiconductor capacitor and method of fabrication is disclosed. A MIM stack, comprising alternating first-type and second-type metal layers (each separated by dielectric) is formed in a deep cavity. The entire stack can be planarized, and then patterned to expose a first area, and selectively etched to recess all first metal layers within the first area. A second selective etch is performed to recess all second metal layers within a second area. The etched recesses can be backfilled with dielectric. Separate electrodes can be formed; a first electrode formed in said first area and contacting all of said second-type metal layers and none of said first-type metal layers, and a second electrode formed in said second area and contacting all of said first-type metal layers and none of said second-type metal layers.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: February 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Publication number: 20150037939
    Abstract: A dielectric template layer is deposited on a substrate. Line trenches are formed within the dielectric template layer by an anisotropic etch that employs a patterned mask layer. The patterned mask layer can be a patterned photoresist layer, or a patterned hard mask layer that is formed by other image transfer methods. A lower portion of each line trench is filled with an epitaxial rare-earth oxide material by a selective rare-earth oxide epitaxy process. An upper portion of each line trench is filled with an epitaxial semiconductor material by a selective semiconductor epitaxy process. The dielectric template layer is recessed to form a dielectric material layer that provides lateral electrical isolation among fin structures, each of which includes a stack of a rare-earth oxide fin portion and a semiconductor fin portion.
    Type: Application
    Filed: July 21, 2014
    Publication date: February 5, 2015
    Inventors: Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Patent number: 8936996
    Abstract: A semiconductor structure is provided that includes a semiconductor oxide layer having features. The semiconductor oxide layer having the features is located between an active semiconductor layer and a handle substrate. The semiconductor structure includes a planarized top surface of the active semiconductor layer such that the semiconductor oxide layer is beneath the planarized top surface. The features within the semiconductor oxide layer are mated with a surface of the active semiconductor layer.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: January 20, 2015
    Assignee: International Business Machines Corporation
    Inventors: Ravi M. Todi, Joseph Ervin, Chengwen Pei, Geng Wang
  • Patent number: 8936992
    Abstract: Two trenches having different widths are formed in a semiconductor-on-insulator (SOI) substrate. An oxygen-impermeable layer and a fill material layer are formed in the trenches. The fill material layer and the oxygen-impermeable layer are removed from within a first trench. A thermal oxidation is performed to convert semiconductor materials underneath sidewalls of the first trench into an upper thermal oxide portion and a lower thermal oxide portion, while the remaining oxygen-impermeable layer on sidewalls of a second trench prevents oxidation of the semiconductor materials. After formation of a node dielectric on sidewalls of the second trench, a conductive material is deposited to fill the trenches, thereby forming a conductive trench fill portion and an inner electrode, respectively. The upper and lower thermal oxide portions function as components of dielectric material portions that electrically isolate two device regions.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: January 20, 2015
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Patent number: 8937345
    Abstract: An integrated circuit includes an active transistor laterally adjacent to a trench capacitor formed in a semiconductor substrate, the active transistor comprising a source junction and a drain junction, wherein a barrier layer is disposed along a periphery of the trench capacitor for isolating the trench capacitor; a passive transistor laterally spaced from the active transistor, wherein at least a portion of the trench capacitor is interposed between the active and passive transistors; an interlevel dielectric disposed upon the active and passive transistors; and a first conductive contact extending through the interlevel dielectric to the drain junction of the active transistor and the at least a portion of the trench capacitor between the active and passive transistors, wherein the first conductive contact electrically connects the trench capacitor to the drain junction of the active transistor.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: January 20, 2015
    Assignee: International Business Machines Corporation
    Inventors: John E. Barth, Jr., Kangguo Cheng, Michael Sperling, Geng Wang
  • Publication number: 20150014814
    Abstract: A high-k dielectric metal trench capacitor and improved isolation and methods of manufacturing the same is provided. The method includes forming at least one deep trench in a substrate, and filling the deep trench with sacrificial fill material and a poly material. The method further includes continuing with CMOS processes, comprising forming at least one transistor and back end of line (BEOL) layer. The method further includes removing the sacrificial fill material from the deep trenches to expose sidewalls, and forming a capacitor plate on the exposed sidewalls of the deep trench. The method further includes lining the capacitor plate with a high-k dielectric material and filling remaining portions of the deep trench with a metal material, over the high-k dielectric material. The method further includes providing a passivation layer on the deep trench filled with the metal material and the high-k dielectric material.
    Type: Application
    Filed: August 25, 2014
    Publication date: January 15, 2015
    Inventors: Roger A. BOOTH, JR., Kangguo CHENG, Joseph ERVIN, Chengwen PEI, Ravi M. TODI, Geng WANG
  • Patent number: 8921198
    Abstract: A method of forming a deep trench capacitor includes providing a wafer. Devices are formed on a front side of the wafer. A through-silicon-via is formed on a substrate of the wafer. Deep trenches are formed on a back side of the wafer. A deep trench capacitor is formed in the deep trench. The through-silicon-via connects the deep trench capacitor to the devices.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: December 30, 2014
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Robert Hannon, Ravi M. Todi, Geng Wang
  • Patent number: 8907410
    Abstract: A through-the silicon via (TSV) structure providing a built-in TSV U-shaped FET that includes an annular gate shaped as a TSV partially embedded in a substrate, the annular gate having an inner and an outer surface bound by an oxide layer; a drain formed on an isolated epitaxial layer on top of the substrate conformally connecting the gate oxide layer surrounding the inner annular surface of the TSV; a source partially contacting said gate oxide layer conformally contacting gate oxide layer surrounding the outer surface of the TSV.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: December 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: Chandrasekharan Kothandaraman, Sami Rosenblatt, Geng Wang
  • Publication number: 20140319600
    Abstract: A through-the silicon via (TSV) structure providing a built-in TSV U-shaped FET that includes an annular gate shaped as a TSV partially embedded in a substrate, the annular gate having an inner and an outer surface bound by an oxide layer; a drain formed on an isolated epitaxial layer on top of the substrate conformally connecting the gate oxide layer surrounding the inner annular surface of the TSV; a source partially contacting said gate oxide layer conformally contacting gate oxide layer surrounding the outer surface of the TSV.
    Type: Application
    Filed: April 25, 2013
    Publication date: October 30, 2014
    Applicant: International Business Machines Corporation
    Inventors: Chandrasekharan Kothandaraman, Sami Rosenblatt, Geng Wang
  • Patent number: 8853781
    Abstract: A dielectric template layer is deposited on a substrate. Line trenches are formed within the dielectric template layer by an anisotropic etch that employs a patterned mask layer. The patterned mask layer can be a patterned photoresist layer, or a patterned hard mask layer that is formed by other image transfer methods. A lower portion of each line trench is filled with an epitaxial rare-earth oxide material by a selective rare-earth oxide epitaxy process. An upper portion of each line trench is filled with an epitaxial semiconductor material by a selective semiconductor epitaxy process. The dielectric template layer is recessed to form a dielectric material layer that provides lateral electrical isolation among fin structures, each of which includes a stack of a rare-earth oxide fin portion and a semiconductor fin portion.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: October 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Patent number: 8846470
    Abstract: A high-k dielectric metal trench capacitor and improved isolation and methods of manufacturing the same is provided. The method includes forming at least one deep trench in a substrate, and filling the deep trench with sacrificial fill material and a poly material. The method further includes continuing with CMOS processes, comprising forming at least one transistor and back end of line (BEOL) layer. The method further includes removing the sacrificial fill material from the deep trenches to expose sidewalls, and forming a capacitor plate on the exposed sidewalls of the deep trench. The method further includes lining the capacitor plate with a high-k dielectric material and filling remaining portions of the deep trench with a metal material, over the high-k dielectric material. The method further includes providing a passivation layer on the deep trench filled with the metal material and the high-k dielectric material.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: September 30, 2014
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Patent number: 8836050
    Abstract: A structure and method to fabricate a body contact on a transistor is disclosed. The method comprises forming a semiconductor structure with a transistor on a handle wafer. The structure is then inverted, and the handle wafer is removed. A silicided body contact is then formed on the transistor in the inverted position. The body contact may be connected to neighboring vias to connect the body contact to other structures or levels to form an integrated circuit.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Chengwen Pei, Roger Allen Booth, Kangguo Cheng, Joseph Ervin, Ravi M. Todi, Geng Wang
  • Patent number: 8835994
    Abstract: A structural alternative to retro doping to reduce transistor leakage is provided by providing a liner in a trench, undercutting a conduction channel region in an active semiconductor layer, etching a side, corner and/or bottom of the conduction channel where the undercut exposes semiconductor material in the active layer and replacing the removed portion of the conduction channel with insulator. This shaping of the conduction channel increases the distance to adjacent circuit elements which, if charged, could otherwise induce a voltage and cause a change in back-channel threshold in regions of the conduction channel and narrows and reduces cross-sectional area of the channel where the conduction in the channel is not well-controlled; both of which effects significantly reduce leakage of the transistor.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Joseph Ervin, Jeffrey B. Johnson, Paul C. Parries, Chengwen Pei, Geng Wang, Yanli Zhang
  • Patent number: 8829585
    Abstract: In a vertical dynamic memory cell, monocrystalline semiconductor material of improved quality is provided for the channel of an access transistor by lateral epitaxial growth over an insulator material (which complements the capacitor dielectric in completely surrounding the storage node except at a contact connection structure, preferably of metal, from the access transistor to the storage node electrode) and etching away a region of the lateral epitaxial growth including a location where crystal lattice dislocations are most likely to occur; both of which features serve to reduce or avoid leakage of charge from the storage node. An isolation structure can be provided in the etched region such that space is provided for connections to various portions of a memory cell array.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: September 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Joseph Ervin, David M. Fried, Byeong Y. Kim, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Patent number: 8809994
    Abstract: Two trenches having different widths are formed in a semiconductor-on-insulator (SOI) substrate. An oxygen-impermeable layer and a fill material layer are formed in the trenches. The fill material layer and the oxygen-impermeable layer are removed from within a first trench. A thermal oxidation is performed to convert semiconductor materials underneath sidewalls of the first trench into an upper thermal oxide portion and a lower thermal oxide portion, while the remaining oxygen-impermeable layer on sidewalls of a second trench prevents oxidation of the semiconductor materials. After formation of a node dielectric on sidewalls of the second trench, a conductive material is deposited to fill the trenches, thereby forming a conductive trench fill portion and an inner electrode, respectively. The upper and lower thermal oxide portions function as components of dielectric material portions that electrically isolate two device regions.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: August 19, 2014
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Patent number: 8809953
    Abstract: A field effect transistor (FET) structure on a semiconductor substrate which includes a gate structure having a spacer on a semiconductor substrate; an extension implant underneath the gate structure; a recessed source and a recessed drain filled with a doped epitaxial material; halo implanted regions adjacent a bottom of the recessed source and drain and being underneath the gate stack. In an exemplary embodiment, there is implanted junction butting underneath the bottom of each of the recessed source and drain, the junction butting being separate and distinct from the halo implanted regions. In another exemplary embodiment, the doped epitaxial material is graded from a lower dopant concentration at a side of the recessed source and drain to a higher dopant concentration at a center of the recessed source and drain. In a further exemplary embodiment, the semiconductor substrate is a semiconductor on insulator substrate.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: August 19, 2014
    Assignee: International Business Machines Corporation
    Inventors: David M. Fried, Jeffrey B. Johnson, Kevin McStay, Paul Parries, Chengwen Pei, Gan Wang, Geng Wang, Yanli Zhang