Patents by Inventor George M. Whitesides

George M. Whitesides has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150375817
    Abstract: A pneumatically powered, fully untethered mobile soft robot is described. Composites consisting of silicone elastomer, polyaramid fabric, and hollow glass microspheres were used to fabricate a sufficiently large soft robot to carry the miniature air compressors, battery, valves, and controller needed for autonomous operation. Fabrication techniques were developed to mold a 0.65 meter long soft body with modified Pneumatic network actuators capable of operating at the elevated pressures (up to 138 kPa) required to actuate the legs of the robot and hold payloads of up to 8 kg. The soft robot is safe to handle, and its silicone body is innately resilient to a variety of adverse environmental conditions including snow, puddles of water, direct (albeit limited) exposure to flames, and the crushing force of being run over by an automobile.
    Type: Application
    Filed: June 30, 2015
    Publication date: December 31, 2015
    Inventors: Michael T. TOLLEY, Robert F. SHEPHERD, Bobak MOSADEGH, Robert J. WOOD, George M. WHITESIDES
  • Publication number: 20150362477
    Abstract: The disclosed methods use a multi-phase system to separate samples according to the density of an analyte of interest. The method uses a multi-phase system that comprises two or more phase-separated solutions and a phase component such as a surfactant or polymer. The density of the analyte of interest differs from the densities of the rest of the sample. The density of the analyte of interest is substantially the same as one or more phases. Thus, when the sample is introduced to the multi-phase system, the analyte of interest migrates to the phase having the same density as the analyte of interest, passing through one or more phases sequentially.
    Type: Application
    Filed: August 25, 2015
    Publication date: December 17, 2015
    Inventors: Charles R. MACE, Ashok A. KUMAR, Dyann F. WIRTH, George M. WHITESIDES
  • Publication number: 20150351936
    Abstract: A finger actuator, includes a plurality of fluidically interconnected inflatable chambers, wherein each chamber comprises outer walls having an embedded extensible layer selected to constrain radial expansion and freestanding inner walls; and an inextensible layer connected to the chambers at a base of the chambers, the inextensible layer comprising a flexible polymer and having an embedded inextensible layer that extends along the length of the finger actuator.
    Type: Application
    Filed: April 13, 2015
    Publication date: December 10, 2015
    Inventors: Bobak MOSADEGH, Brandon Grant GERBERICH, George M. WHITESIDES
  • Publication number: 20150354547
    Abstract: A soft robot device includes at least a first thermoplastic layer and a second thermoplastic layer, wherein at least one layer is comprised of an extensible thermoplastic material; at least one layer is an inextensible layer; and at least one layer comprises a pneumatic network, wherein the pneumatic network is configured to be in fluidic contact with a pressurizing source, wherein the first and second thermoplastic layers are thermally bonded to each other.
    Type: Application
    Filed: April 13, 2015
    Publication date: December 10, 2015
    Inventors: Jason Ming TING, Alok Suryavamsee TAYI, Bobak MOSADEGH, George M. WHITESIDES
  • Publication number: 20150357078
    Abstract: An elastically-deformable, conductive composite using elastomers and conductive fibers and simple fabrication procedures is provided. Conductive elastomeric composites offer low resistance to electrical current and are elastic over large (>25%) extensional strains. They can be easily interfaced/built into structures fabricated from elastomeric polymers.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 10, 2015
    Inventors: Joshua Aaron LESSING, Stephen A. MORIN, George M. WHITESIDES
  • Publication number: 20150337873
    Abstract: A soft actuator is described, including: a rotation center having a center of mass; a plurality of bucklable, elastic structural components each comprising a wall defining an axis along its longest dimension, the wall connected to the rotation center in a way that the axis is offset from the center of mass in a predetermined direction; and a plurality of cells each disposed between two adjacent bucklable, elastic structural components and configured for connection with a fluid inflation or deflation source; wherein upon the deflation of the cell, the bucklable, elastic structural components are configured to buckle in the predetermined direction. A soft actuating device including a plurality of the soft actuators and methods of actuation using the soft actuator or soft actuating device disclosed herein are also described.
    Type: Application
    Filed: April 13, 2015
    Publication date: November 26, 2015
    Inventors: Dian YANG, George M. WHITESIDES
  • Patent number: 9193988
    Abstract: Embodiments of the invention provide lateral flow and flow-through bioassay devices based on patterned porous media, methods of making same, and methods of using same. Under one aspect, an assay device includes a porous, hydrophilic medium; a fluid impervious barrier comprising polymerized photoresist, the barrier substantially permeating the thickness of the porous, hydrophilic medium and defining a boundary of an assay region within the porous, hydrophilic medium; and an assay reagent in the assay region.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: November 24, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Whitesides, Scott T. Phillips, Andres W. Martinez, Manish J. Butte, Amy Wong, Samuel W. Thomas, Hayat Sindi, Sarah J. Vella, Emanuel Carrilho, Katherine A. Mirica, Yanyan Liu
  • Patent number: 9192933
    Abstract: Microfluidic, electrochemical devices are described. The microfluidic, electrochemical device comprises one or more electrode(s) on a substrate and a patterned porous, hydrophilic layer having a fluid-impermeable barrier which substantially permeates the thickness of the porous, hydrophilic layer and defines boundaries of one or more hydrophilic channels within the patterned porous, hydrophilic layer, wherein the hydrophilic channel(s) comprises a hydrophilic region which is in fluidic communication with the electrode(s). In some embodiments, the electrodes comprise a working electrode, a counter electrode, and a reference electrode. In some embodiments, the microfluidic, electrochemical device further comprises a fluid sink. The method of assembling the microfluidic, electrochemical device is described. The method of using the device for electrochemical analysis of one or more analytes is also described.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: November 24, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Whitesides, Zhihong Nie, Christian Nijhuis, Xin Chen, Andres W. Martinez, Max Narovlyansky
  • Patent number: 9176105
    Abstract: The disclosed methods use a multi-phase system to separate samples according to the density of an analyte of interest. The method uses a multi-phase system that comprises two or more phase-separated solutions and a phase component such as a surfactant or polymer. The density of the analyte of interest differs from the densities of the rest of the sample. The density of the analyte of interest is substantially the same as one or more phases. Thus, when the sample is introduced to the multi-phase system, the analyte of interest migrates to the phase having the same density as the analyte of interest, passing through one or more phases sequentially.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: November 3, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Charles R. Mace, Ashok A. Kumar, Dyann F. Wirth, George M. Whitesides
  • Publication number: 20150283699
    Abstract: Systems and methods for providing flexible robotic actuators are disclosed. Some embodiments of the disclosed subject matter include a soft robot capable of providing a radial deflection motions; a soft tentacle actuator capable of providing a variety of motions and providing transportation means for various types of materials; and a hybrid robotic system that retains desirable characteristics of both soft robots and hard robots. Some embodiments of the disclosed subject matter also include methods for operating the disclosed robotic systems.
    Type: Application
    Filed: September 8, 2014
    Publication date: October 8, 2015
    Inventors: Stephen A. MORIN, Robert F. SHEPHERD, Adam STOKES, Filip ILIEVSKI, Ramses V. MARTINEZ, Jamie L. BRANCH, Carina R. FISH, Lihua JIN, Rui M.D. NUNES, Zhigang SUO, George M. WHITESIDES
  • Publication number: 20150284613
    Abstract: The present invention is directed to adhesive systems and methods of making and using such systems. Exemplary adhesive systems comprise protrusions and/or grooves that can interleave to form a reversible adhesive interaction.
    Type: Application
    Filed: October 27, 2014
    Publication date: October 8, 2015
    Inventors: Brian MAYERS, Sandip Agarwal, Jeffrey Carbeck, David Ledoux, Kevin Randall Stewart, George M. Whitesides, Adam Winkleman
  • Publication number: 20150266186
    Abstract: An actuator includes a plurality of chambers comprised of an extensible material, the chambers having interior side walls and exterior walls, wherein at least a portion of the interior side wall is separated from an interior side wall of an adjacent chamber; and a strain limiting base; and a channel that fluidically interconnects the plurality of chambers, wherein the interior walls are configured to be more compliant than the exterior walls.
    Type: Application
    Filed: August 20, 2014
    Publication date: September 24, 2015
    Inventors: Bobak MOSADEGH, Robert F. SHEPHERD, George M. WHITESIDES
  • Publication number: 20150268234
    Abstract: A system and method that quantifies the concentration of an immunoactive analyte by detecting a chemically amplified change in density. This method, termed DeLISA for Density-Linked Immunosorbent Assay, but useful for any biomolecular recognition event, uses magnetic levitation (MagLev) to detect the changes in density. The present disclosure provides a quantitative measure of detecting binding events, does not require the use of electricity, and can be easily multiplexed to detect multiple analytes since several beads can be placed in single serum sample to detect, for example, HIV, Syphilis, Hepatitis C, and the like, simultaneously.
    Type: Application
    Filed: July 29, 2013
    Publication date: September 24, 2015
    Inventors: George M. Whitesides, Nathan D. Shapiro, Anand Bala Subramaniam
  • Publication number: 20150240958
    Abstract: A pneumatic controller for controllably providing pressurized gas to a target location is disclosed. The pneumatic controller can include an elastomeric manifold comprising a body and a first membrane coupled to a lower portion of the body. The body and the first membrane can form a first integrated channel having a first inlet, a first outlet, and an exhaust, and the first integrated channel is configured to receive pressurized gas at a first pressure at the first inlet and provide the pressurized gas to the first outlet. The body also has a sufficient stiffness to withstand an elevated pressure of the pressurized gas. The pneumatic controller can also include an actuator configured to change the first membrane from a first configuration to a second configuration to control a flow of the pressurized gas in the first integrated channel.
    Type: Application
    Filed: October 22, 2013
    Publication date: August 27, 2015
    Applicant: President and Fellows of Harvard College
    Inventors: Bobak Mosadegh, George M. Whitesides
  • Patent number: 9116148
    Abstract: A method and apparatus for delivering one or more fluids. Fluids may be delivered sequentially from a common vessel to a chemical, biological or biochemical process.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: August 25, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Vincent Linder, Samuel K. Sia, George M. Whitesides
  • Publication number: 20150233901
    Abstract: A method and apparatus for delivering one or more fluids. Fluids may be delivered from a common vessel to a chemical, biological or biochemical process.
    Type: Application
    Filed: May 1, 2015
    Publication date: August 20, 2015
    Applicant: President and Fellows of Harvard College
    Inventors: Vincent Linder, Samuel K. Sia, George M. Whitesides
  • Publication number: 20150231841
    Abstract: Exemplary method and system can be implemented and/or used for providing a diffractive configuration in an optical arrangement can be provided. For example, an elastomeric material can be provided with at least one patterned surface. The elastomeric material can be connected with at least one portion of a waveguide arrangement using a pre-polymer adhesive composition. Further, the pre-polymer adhesive composition can be caused to polymerize so as to form the diffractive configuration which at least approximately replicate a structure or at least one feature of an elastomeric mold.
    Type: Application
    Filed: August 21, 2013
    Publication date: August 20, 2015
    Inventors: Guillermo J. Tearney, Brett Eugene Bouma, Dongkyun Kang, George M. Whitesides, Rames Martinez
  • Publication number: 20150217459
    Abstract: Apparatus, systems, and methods for providing modular soft robots are disclosed. In particular, the disclosed modular soft robot can include a flexible actuator having a plurality of molded flexible units. Each molded flexible unit can include a mechanical connector configured to provide a physical coupling to another molded flexible unit, and the plurality of molded flexible units are arranged to form an embedded fluidic channel. The modular soft robot can also include an inlet coupled to the embedded fluidic channel, where the inlet is configured to receive pressurized or depressurized fluid to inflate or deflate a portion of the flexible actuator, thereby causing an actuation of the flexible actuator.
    Type: Application
    Filed: July 18, 2013
    Publication date: August 6, 2015
    Inventors: Stephen A. Morin, Sen Wai Kwok, Robert F. Shepherd, George M. Whitesides
  • Patent number: 9090868
    Abstract: Alginate hydrogel fibers and related materials as well as methods for preparing such materials are provided. An alginate hydrogel fiber includes water in an amount of more than about 92% by weight of the fiber and a cross-linked alginate in an amount of about 0.1% to about 8% by weight of the fiber, wherein the cross-link is a cation. An alginate hydrogel paper includes one or more alginate hydrogel fibers, which form a non-woven matrix. Three-dimensional cellular arrays are also provided, wherein the alginate hydrogel making up the alginate paper is substantially index-matched with a predetermined culture medium. A method for making alginate hydrogel fiber and a method for index-matching alginate hydrogel paper with culture medium are provided. A kit for conducting biochemical, diagnostic, cellular, and/or non-cellular analysis comprises alginate hydrogel paper index-matched to culture medium.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: July 28, 2015
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Charles R. Mace, Jabulani Barber, Anna Laromaine Sagué, George M. Whitesides, Rebecca Cademartiri
  • Publication number: 20150135829
    Abstract: This present disclosure describes the utility of paramagnetic ionic liquids for density-based measurements using magnetic levitation (MagLev), The physical properties of paramagnetic ionic liquids, including density, magnetic susceptibility, glass transition temperature, melting point, thermal decomposition temperature, viscosity, and hydrophobicity can be tuned by altering the cation or anion.
    Type: Application
    Filed: June 14, 2013
    Publication date: May 21, 2015
    Applicant: PRESIDENTS AND FELLOWS OF HARVARD COLLEGE
    Inventors: George M. Whitesides, David Bwambok, Martin Mwangi Thuo, Katherine A. Mirica, Manza Atkinson