Patents by Inventor Gerard Harbers

Gerard Harbers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130314911
    Abstract: A light emitting diode module is produced using at least one LED and at least two selectable components that form a light mixing chamber. First and second selectable components have first and second types of wavelength converting materials with different wavelength converting characteristics. The first and second wavelength converting characteristics alter the spectral power distribution of the light produced by the LED to produce light with a color point that is a predetermined tolerance from a predetermined color point. Moreover, a set of LED modules may be produced such that each LED module has the same color point within a predetermined tolerance. The LED module may be produced by pre-measuring the wavelength converting characteristics of the different components selecting components with wavelength converting characteristics that convert the spectral power distribution of the LED to a color point that is a predetermined tolerance from a predetermined color point.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 28, 2013
    Applicant: Xicato, Inc.
    Inventors: Gerard Harbers, Peter K. Tseng, Christopher R. Reed
  • Publication number: 20130315280
    Abstract: A light emitting diode (LED) based illumination module performs on-board diagnostics. For example, diagnostics may include estimating elapsed lifetime, degradation of phosphor, thermal failure, failure of LEDs, or LED current adjustment based on measured flux or temperature. The elapsed lifetime may be estimated by scaling accumulated elapsed time of operation by an acceleration factor derived from actual operating conditions, such as temperature, current and relative humidity. The degradation of phosphor may be estimated based on a measured response of the phosphor to pulsed light from the LEDs. A thermal failure may be diagnosed using a transient response of the module from a start up condition. The failure of LEDs may be diagnosed based on measured forward voltage. The current for LEDs may adjusted using measured flux values and current values and a desired ratio of flux values. Additionally, the LED current may be scaled based on a measured temperature.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 28, 2013
    Applicant: Xicato, Inc.
    Inventor: Gerard Harbers
  • Publication number: 20130314004
    Abstract: An electrical interface module (EIM) is provided between an LED illumination device and a light fixture. The EIM includes an arrangement of contacts that are adapted to be coupled to an LED illumination device and a second arrangement of contacts that are adapted to be coupled to the light fixture and may include a power converter. Additionally, an LED selection module may be included to selectively turn on or off LEDs. A communication port may be included to transmit information associated with the LED illumination device, such as identification, indication of lifetime, flux, etc. The lifetime of the LED illumination device may be measured and communicated, e.g., by an RF signal, IR signal, wired signal or by controlling the light output of the LED illumination device. An optic that is replaceably mounted to the LED illumination device may include, e.g., a flux sensor that is connected to the electrical interface.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 28, 2013
    Applicant: Xicato, Inc.
    Inventors: Gerard Harbers, Gregory W. Eng, Christopher R. Reed, Peter K. Tseng, John S. Yriberri
  • Publication number: 20130235556
    Abstract: An illumination module includes a plurality of Light Emitting Diodes (LEDs). The illumination module may include a reflective color converting element with a PTFE layer and a color converting layer fixed to the PTFE layer. The color converting layer includes phosphor particles embedded in a polymer matrix and has a thickness that is less than five times an average diameter of the phosphor particles. The illumination module may include a transmissive color converting element. The color converting elements may be produced by mixing a polymer binder with a solvent and phosphor particles to form a homogeneous suspension of the phosphor particles. The homogeneous suspension is applied to a surface to form an uncured color converting layer, which is heated to vaporize the solvent.
    Type: Application
    Filed: April 22, 2013
    Publication date: September 12, 2013
    Applicant: Xicato, Inc.
    Inventors: Padmanabha Rao Ravilisetty, Gerard Harbers
  • Publication number: 20130229785
    Abstract: An illumination module includes a color conversion cavity with multiple interior surfaces, such as sidewalls and an output window. A shaped reflector is disposed above a mounting board upon which are mounted LEDs. The shaped reflector includes a first plurality of reflective surfaces that preferentially direct light emitted from a first LED to a first interior surface of the color conversion cavity and a second plurality of reflective surfaces that preferentially direct light emitted from a second LED to a second interior surface. The illumination module may further include a second color conversion cavity.
    Type: Application
    Filed: March 22, 2013
    Publication date: September 5, 2013
    Applicant: Xicato, Inc.
    Inventor: Gerard Harbers
  • Patent number: 8517562
    Abstract: An electrical interface module (EIM) is provided between an LED illumination device and a light fixture. The EIM includes an arrangement of contacts that are adapted to be coupled to an LED illumination device and a second arrangement of contacts that are adapted to be coupled to the light fixture and may include a power converter. Additionally, an LED selection module may be included to selectively turn on or off LEDs. A communication port may be included to transmit information associated with the LED illumination device, such as identification, indication of lifetime, flux, etc. The lifetime of the LED illumination device may be measured and communicated, e.g., by an RF signal, IR signal, wired signal or by controlling the light output of the LED illumination device. An optic that is replaceably mounted to the LED illumination device may include, e.g., a flux sensor that is connected to the electrical interface.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: August 27, 2013
    Assignee: Xicato, Inc.
    Inventors: Gerard Harbers, Gregory W. Eng, Christopher R. Reed, Peter K. Tseng, John S. Yriberri
  • Patent number: 8519714
    Abstract: A light emitting diode (LED) based illumination module performs on-board diagnostics. For example, diagnostics may include estimating elapsed lifetime, degradation of phosphor, thermal failure, failure of LEDs, or LED current adjustment based on measured flux or temperature. The elapsed lifetime may be estimated by scaling accumulated elapsed time of operation by an acceleration factor derived from actual operating conditions, such as temperature, current and relative humidity. The degradation of phosphor may be estimated based on a measured response of the phosphor to pulsed light from the LEDs. A thermal failure may be diagnosed using a transient response of the module from a start up condition. The failure of LEDs may be diagnosed based on measured forward voltage. The current for LEDs may adjusted using measured flux values and current values and a desired ratio of flux values. Additionally, the LED current may be scaled based on a measured temperature.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: August 27, 2013
    Assignee: Xicato, Inc.
    Inventor: Gerard Harbers
  • Patent number: 8500297
    Abstract: A light emitting diode module is produced using at least one LED and at least two selectable components that form a light mixing chamber. First and second selectable components have first and second types of wavelength converting materials with different wavelength converting characteristics. The first and second wavelength converting characteristics alter the spectral power distribution of the light produced by the LED to produce light with a color point that is a predetermined tolerance from a predetermined color point. Moreover, a set of LED modules may be produced such that each LED module has the same color point within a predetermined tolerance. The LED module may be produced by pre-measuring the wavelength converting characteristics of the different components selecting components with wavelength converting characteristics that convert the spectral power distribution of the LED to a color point that is a predetermined tolerance from a predetermined color point.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: August 6, 2013
    Assignee: Xicato, Inc.
    Inventors: Gerard Harbers, Peter K. Tseng, Christopher R. Reed
  • Patent number: 8449129
    Abstract: An illumination module includes a color conversion cavity with a first interior surface having a first wavelength converting material and a second interior surface having a second wavelength converting material. A first LED is configured to receive a first current and to emit light that preferentially illuminates the first interior surface. A second LED is configured to receive a second current and emit light that preferentially illuminates the second interior surface. The first current and the second current are selectable to achieve a range of correlated color temperature (CCT) of light output by the LED based illumination device.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: May 28, 2013
    Assignee: Xicato, Inc.
    Inventors: Gerard Harbers, Serge J. A. Bierhuizen, Hong Luo
  • Patent number: 8425065
    Abstract: An illumination module includes a plurality of Light Emitting Diodes (LEDs). The illumination module may include a reflective color converting element with a PTFE layer and a color converting layer fixed to the PTFE layer. The color converting layer includes phosphor particles embedded in a polymer matrix and has a thickness that is less than five times an average diameter of the phosphor particles. The illumination module may include a transmissive color converting element. The color converting elements may be produced by mixing a polymer binder with a solvent and phosphor particles to form a homogeneous suspension of the phosphor particles. The homogeneous suspension is applied to a surface to form an uncured color converting layer, which is heated to vaporize the solvent. The cured color converting layer includes the phosphor particles suspended in the polymer binder.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: April 23, 2013
    Assignee: Xicato, Inc.
    Inventors: Padmanabha Rao Ravillisetty, Gerard Harbers
  • Patent number: 8421952
    Abstract: A backlight for a display includes a plurality of illumination modules, each illumination module including a light source and a reflective member. A portion of the reflective member is disposed over the light source. A liquid crystal display panel is disposed over the plurality of illumination modules. The reflective member is configured such that a majority of light from the light source is directed parallel to the liquid crystal display panel, to provide uniform illumination of the liquid crystal display panel. In some embodiments, the light source is at least one semiconductor light emitting diode.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: April 16, 2013
    Assignee: Philips Lumileds Lighting Company, LLC
    Inventors: Gerard Harbers, Takaaki Yagi, Johannes W. H. S. Smitt, Serge J. Bierhuizen
  • Patent number: 8408726
    Abstract: An illumination module includes a light mixing cavity with an interior surface area and window that are physically separated from an LED. A portion of the window is coated with a first wavelength converting material and a portion of the interior surface area is coated with a second wavelength converting material. The window may be coated with LuAG:Ce. The window may also be coated with a third wavelength converting material with a peak emission wavelength between 615-655 nm where the spectral response of light emitted from the window is within 20% of a blackbody radiator at the same CCT. The LED may emit a light that is converted by the light mixing cavity with a color conversion efficiency ratio greater than 130 lm/W where the light mixing cavity includes two photo-luminescent materials with a peak emission wavelengths between 508-528 nm and 615-655 nm.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: April 2, 2013
    Assignee: Xicato, Inc.
    Inventors: Gerard Harbers, Raghuram L.V. Petluri
  • Patent number: 8403529
    Abstract: An illumination module includes a color conversion cavity with multiple interior surfaces, such as sidewalls and an output window. A shaped reflector is disposed above a mounting board upon which are mounted LEDs. The shaped reflector includes a first plurality of reflective surfaces that preferentially direct light emitted from a first LED to a first interior surface of the color conversion cavity and a second plurality of reflective surfaces that preferentially direct light emitted from a second LED to a second interior surface. The illumination module may further include a second color conversion cavity.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: March 26, 2013
    Assignee: Xicato, Inc.
    Inventor: Gerard Harbers
  • Patent number: 8382335
    Abstract: A light emitting diode module is produced using at least one LED and at least two selectable components that form a light mixing chamber. First and second selectable components have first and second types of wavelength converting materials with different wavelength converting characteristics. The first and second wavelength converting characteristics alter the spectral power distribution of the light produced by the LED to produce light with a color point that is a predetermined tolerance from a predetermined color point. Moreover, a set of LED modules may be produced such that each LED module has the same color point within a predetermined tolerance. The LED module may be produced by pre-measuring the wavelength converting characteristics of the different components selecting components with wavelength converting characteristics that convert the spectral power distribution of the LED to a color point that is a predetermined tolerance from a predetermined color point.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: February 26, 2013
    Assignee: Xicato, Inc.
    Inventors: Gerard Harbers, Peter K. Tseng, Christopher R. Reed
  • Patent number: 8376577
    Abstract: An LED module includes an upper housing with in internal cavity and a lower housing. At least one light emitting diode is held in the LED module and emits light into the internal cavity, which is emitted through an output port in the upper housing. An optical structure, which may be disk or cylinder shaped may be mounted over the output port and light is emitted through the top surface and/or edge surface of the optical structure. The lower housing has a cylindrical external surface, which may be part of a fastener, such as screw threads, so that the LED module can be coupled to a heat sink, bracket or frame. The light emitting diode is thermally coupled to the lower housing, which may serve as a heat spreader. Additionally, a flange may be disposed between the upper housing and lower housing.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: February 19, 2013
    Assignee: Xicato, Inc.
    Inventors: Gerard Harbers, Mark A. Pugh
  • Publication number: 20120327649
    Abstract: An illumination module includes a plurality of Light Emitting Diodes (LEDs). The illumination module includes a reflective mask cover plate disposed over the LEDs. The reflective mask includes a patterned reflective layer with an opening area aligned with the active die area of the LEDs. The reflective mask may be a patterned reflective layer disposed between the plurality of LEDs and a lens element, wherein a void in the patterned reflective layer is filled with a material that mechanically and optically couples the plurality of LEDs and the lens element. The illumination module may include a color conversion cavity that envelopes a lens element that may include a dichroic filter. The lens element may have different surface profiles over different groups of LEDs.
    Type: Application
    Filed: June 19, 2012
    Publication date: December 27, 2012
    Applicant: Xicato, Inc.
    Inventors: Gerard Harbers, Serge J.A. Bierhuizen
  • Publication number: 20120300452
    Abstract: An illumination module includes a color conversion cavity with a first interior surface having a first wavelength converting material and a second interior surface having a second wavelength converting material. A first LED is configured to receive a first current and to emit light that preferentially illuminates the first interior surface. A second LED is configured to receive a second current and emit light that preferentially illuminates the second interior surface. The first current and the second current are selectable to achieve a range of correlated color temperature (CCT) of light output by the LED based illumination device.
    Type: Application
    Filed: July 27, 2012
    Publication date: November 29, 2012
    Applicant: Xicato, Inc.
    Inventors: Gerard Harbers, Serge J.A. Bierhuizen, Hong Luo
  • Patent number: 8317359
    Abstract: A light emitting device is produced using one or more light emitting diodes within a light mixing cavity formed by surrounding sidewalls. The light emitting device includes a light adjustment member that is movable to alter the shape or color of the light produced by the light emitting device. For example, the light adjustment member may alter the exposure of the wavelength converting area to the light emitted that is emitted by the light emitting diode in the light mixing cavity. Alternatively, the height of a lens may be adjusted to change the width of the beam produced. Alternatively, a movable substrate with areas of different wavelength converting materials may adjustably cover the output port of the light mixing cavity to alter the color point of the light produced.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: November 27, 2012
    Assignee: Xicato, Inc.
    Inventors: Gerard Harbers, Mark A. Pugh, Menne T. de Roos, John S. Yriberri, Peter K. Tseng
  • Publication number: 20120287624
    Abstract: An illumination module includes a color conversion cavity with multiple interior surfaces, such as sidewalls and an output window. A shaped reflector is disposed above a mounting board upon which are mounted LEDs. The shaped reflector includes a first plurality of reflective surfaces that preferentially direct light emitted from a first LED to a first interior surface of the color conversion cavity and a second plurality of reflective surfaces that preferentially direct light emitted from a second LED to a second interior surface. The illumination module may further include a second color conversion cavity.
    Type: Application
    Filed: July 27, 2012
    Publication date: November 15, 2012
    Applicant: Xicato, Inc.
    Inventor: Gerard Harbers
  • Publication number: 20120287623
    Abstract: An illumination module includes a plurality of Light Emitting Diodes (LEDs) and a light conversion sub-assembly mounted near but physically separated from the LEDs. The light conversion sub-assembly includes at least a portion that is a polytetrafluoroethylene (PTFE) material that also includes a wavelength converting material. Despite being less reflective than other materials that may be used in the light conversion sub-assembly, the PTFE material unexpectedly produces an increase in luminous output, compared to other more reflective materials, when the PTFE material includes a wavelength converting material.
    Type: Application
    Filed: July 26, 2012
    Publication date: November 15, 2012
    Applicant: Xicato, Inc.
    Inventors: Peter K. Tseng, Gerard Harbers