Patents by Inventor Gerard Harbers

Gerard Harbers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8297766
    Abstract: A lighting module includes a light output window, at least one side wall that defines a cavity and a mounting plate, and at least one light source, and at least one reflector that is within the cavity. The light output window may be one of the side walls in a side-emitting configuration. The spectral distribution of the light coming out of the light output window may be changed by manipulating the relative position of the side wall to the at least one reflector that is within the cavity.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: October 30, 2012
    Assignee: Xicato, Inc.
    Inventors: Gerard Harbers, Mark A Pugh, Menne T de Roos, Peter K. Tseng
  • Patent number: 8297767
    Abstract: An illumination module includes a plurality of Light Emitting Diodes (LEDs) and a light conversion sub-assembly mounted near but physically separated from the LEDs. The light conversion sub-assembly includes at least a portion that is a polytetrafluoroethylene (PTFE) material that also includes a wavelength converting material. Despite being less reflective than other materials that may be used in the light conversion sub-assembly, the PTFE material unexpectedly produces an increase in luminous output, compared to other more reflective materials, when the PTFE material includes a wavelength converting material.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: October 30, 2012
    Assignee: Xicato, Inc.
    Inventors: Peter K. Tseng, Gerard Harbers
  • Publication number: 20120267653
    Abstract: A light emitting diode module is produced using at least one LED and at least two selectable components that form a light mixing chamber. First and second selectable components have first and second types of wavelength converting materials with different wavelength converting characteristics. The first and second wavelength converting characteristics alter the spectral power distribution of the light produced by the LED to produce light with a color point that is a predetermined tolerance from a predetermined color point. Moreover, a set of LED modules may be produced such that each LED module has the same color point within a predetermined tolerance. The LED module may be produced by pre-measuring the wavelength converting characteristics of the different components selecting components with wavelength converting characteristics that convert the spectral power distribution of the LED to a color point that is a predetermined tolerance from a predetermined color point.
    Type: Application
    Filed: June 27, 2012
    Publication date: October 25, 2012
    Applicant: Xicato, Inc.
    Inventors: Gerard Harbers, Peter K. Tseng, Christopher R. Reed
  • Patent number: 8292482
    Abstract: A mounting collar on a light fixture provides a compressive force between the illumination module and a light fixture. For example, a mounting collar that is fixed to the light fixture may engage with an illumination module to deform elastic mounting members on the illumination module to generate the compressive force. The mounting collar may include tapered features on first and second members that are moveable with respect to each other and that when engaged generate the compressive force. The mounting collar may include elastic mounting members on first and second members that move with respect to each other, wherein the movement deforms the elastic mounting members to generate the compressive force. The mounting collar may include an elastic member, wherein movement movement of the mounting collar relative to a light fixture deforms the elastic member to generate the compressive force.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: October 23, 2012
    Assignee: Xicato, Inc.
    Inventors: Gerard Harbers, Gregory W. Eng, Christopher R. Reed, Peter K. Tseng, John S. Yriberri
  • Publication number: 20120257386
    Abstract: An illumination module includes a plurality of Light Emitting Diodes (LEDs). The illumination module includes a reflective mask cover plate disposed over the LEDs. The reflective mask includes a patterned reflective layer with an opening area aligned with the active die area of the LEDs. The reflective mask may be a patterned reflective layer disposed between the plurality of LEDs and a lens element, wherein a void in the patterned reflective layer is filled with a material that mechanically and optically couples the plurality of LEDs and the lens element. The illumination module may include a color conversion cavity that envelopes a lens element that may include a dichroic filter. The lens element may have different surface profiles over different groups of LEDs.
    Type: Application
    Filed: June 19, 2012
    Publication date: October 11, 2012
    Applicant: Xicato, Inc.
    Inventors: Gerard Harbers, Serge J.A. Bierhuizen
  • Publication number: 20120250304
    Abstract: An illumination module includes a plurality of Light Emitting Diodes (LEDs). A grid structure is present on a transmissive layer over the LEDs, such as an output window, to form a plurality of color conversion pockets. A portion of the pockets are coated with a first type of wavelength converting material while other portions of the pockets are coated with a different type of wavelength converting material.
    Type: Application
    Filed: March 27, 2012
    Publication date: October 4, 2012
    Applicant: XICATO, INC.
    Inventors: Gerard Harbers, Gregory W. Eng, Peter K. Tseng, John S. Yriberri
  • Publication number: 20120250320
    Abstract: An illumination module includes a plurality of Light Emitting Diodes (LEDs). Multiple color conversion cavities are present, each with sidewalls coated with wavelength converting materials. One or more LEDs are located within each color conversion cavity. A transmissive layer may be deposited over the color conversion cavities and may include additional wavelength converting material. The wavelength converting materials may be selected to produce an output light with target color point. Additionally, a secondary light mixing cavity may be present over the multiple color conversion cavities.
    Type: Application
    Filed: March 27, 2012
    Publication date: October 4, 2012
    Applicant: XICATO, INC.
    Inventors: Gerard Harbers, Gregory W. Eng, Peter K. Tseng, John S. Yriberri
  • Publication number: 20120224177
    Abstract: LED based illumination modules are realized that are visually color matched to light sources not based on LEDs based on visually matched color spaces. A visually matched color space is employed to both instrumentally and visually match an LED based light source with a light source not based on LEDs. In one aspect, an LED based illumination module is realized to achieve a target color point in a visually matched color space within a predetermined tolerance. In another aspect, an LED based illumination module is realized to visually match a light source not based on LEDs. A target color point in the CIE 1931 XYZ color space is derived based at least in part on the spectrum of the visually matched LED based illumination module. LED based illumination modules visually matched to light sources not based on LEDs are realized based on the derived target color point.
    Type: Application
    Filed: May 11, 2012
    Publication date: September 6, 2012
    Applicant: Xicato, Inc.
    Inventors: Gerard Harbers, Raghuram L.V. Petluri
  • Patent number: 8237381
    Abstract: An electrical interface module (EIM) is provided between an LED illumination device and a light fixture. The EIM includes an arrangement of contacts that are adapted to be coupled to an LED illumination device and a second arrangement of contacts that are adapted to be coupled to the light fixture and may include a power converter. Additionally, an LED selection module may be included to selectively turn on or off LEDs. A communication port may be included to transmit information associated with the LED illumination device, such as identification, indication of lifetime, flux, etc. The lifetime of the LED illumination device may be measured and communicated, e.g., by an RF signal, IR signal, wired signal or by controlling the light output of the LED illumination device. An optic that is replaceably mounted to the LED illumination device may include, e.g., a flux sensor that is connected to the electrical interface.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: August 7, 2012
    Assignee: Xicato, Inc.
    Inventors: Gerard Harbers, Gregory W. Eng, Christopher R. Reed, Peter K. Tseng, John S. Yriberri
  • Patent number: 8220971
    Abstract: A light emitting diode module is produced using at least one light emitting diode (LED) and at least two selectable components that form or are part of a light mixing chamber that surrounds the LEDs and includes an output port. A first selectable component has a first type of wavelength converting material with a first wavelength converting characteristic and a second selectable component has a second type of wavelength converting material with a different wavelength converting characteristic. The first and second wavelength converting characteristics alter the spectral power distribution of the light produced by the LED to produce light through the output port that has a color point that is a predetermined tolerance from a predetermined color point. Moreover, a set of LED modules may be produced such that each LED module has the same color point within a predetermined tolerance.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: July 17, 2012
    Assignee: Xicato, Inc.
    Inventors: Gerard Harbers, Peter K. Tseng, Christopher R. Reed
  • Publication number: 20120099290
    Abstract: An illumination module includes a light mixing cavity with an interior surface area and window that are physically separated from an LED. A portion of the window is coated with a first wavelength converting material and a portion of the interior surface area is coated with a second wavelength converting material. The window may be coated with LuAG:Ce. The window may also be coated with a third wavelength converting material with a peak emission wavelength between 615-655 nm where the spectral response of light emitted from the window is within 20% of a blackbody radiator at the same CCT. The LED may emit a light that is converted by the light mixing cavity with a color conversion efficiency ratio greater than 130 lm/W where the light mixing cavity includes two photo-luminescent materials with a peak emission wavelengths between 508-528 nm and 615-655 nm.
    Type: Application
    Filed: January 4, 2012
    Publication date: April 26, 2012
    Applicant: Xicato, Inc.
    Inventors: Gerard Harbers, Raghuram L.V. Petluri
  • Publication number: 20120087124
    Abstract: An illumination module includes a plurality of Light Emitting Diodes (LEDs). The illumination module may include a reflective color converting element with a PTFE layer and a color converting layer fixed to the PTFE layer. The color converting layer includes phosphor particles embedded in a polymer matrix and has a thickness that is less than five times an average diameter of the phosphor particles. The illumination module may include a transmissive color converting element. The color converting elements may be produced by mixing a polymer binder with a solvent and phosphor particles to form a homogeneous suspension of the phosphor particles. The homogeneous suspension is applied to a surface to form an uncured color converting layer, which is heated to vaporize the solvent.
    Type: Application
    Filed: December 16, 2011
    Publication date: April 12, 2012
    Applicant: Xicato, Inc.
    Inventors: Padmanabha Rao Ravillisetty, Gerard Harbers
  • Publication number: 20120051045
    Abstract: LED based illumination modules are realized that are visually color matched to light sources not based on LEDs based on visually matched color spaces. A visually matched color space is employed to both instrumentally and visually match an LED based light source with a light source not based on LEDs. In one aspect, an LED based illumination module is realized to achieve a target color point in a visually matched color space within a predetermined tolerance. In another aspect, an LED based illumination module is realized to visually match a light source not based on LEDs. A target color point in the CIE 1931 XYZ color space is derived based at least in part on the spectrum of the visually matched LED based illumination module. LED based illumination modules visually matched to light sources not based on LEDs are realized based on the derived target color point.
    Type: Application
    Filed: August 27, 2010
    Publication date: March 1, 2012
    Applicant: Xicato, Inc.
    Inventors: Gerard Harbers, Raghuram L.V. Petluri
  • Patent number: 8104922
    Abstract: A solid state illumination device includes a semiconductor light emitter mounted on a base and surrounded by sidewalls, e.g., in a circular, elliptical, triangular, rectangular or other appropriate arrangement, to define a chamber. A top element, which may be reflective, may be coupled to the sidewalls to further define the chamber. The light produced by the semiconductor light emitter is emitted through the sidewalls of the chamber. The sidewalls and/or top element may include wavelength converting material, for example, as a plurality of dots on the surfaces. An adjustable wavelength converting element may be used within the chamber, with the adjustable wavelength converting element being configured to adjust the surface area that is exposed to the light emitted by the semiconductor light emitter in the chamber to alter an optical property of the chamber.
    Type: Grant
    Filed: July 31, 2010
    Date of Patent: January 31, 2012
    Assignee: Xicato, Inc.
    Inventors: Gerard Harbers, Mark A. Pugh
  • Patent number: 8104908
    Abstract: An illumination module includes a light mixing cavity with an interior surface area and window that are physically separated from an LED. A portion of the window is coated with a first wavelength converting material and a portion of the interior surface area is coated with a second wavelength converting material. The window may be coated with LuAG:Ce. The window may also be coated with a third wavelength converting material with a peak emission wavelength between 615-655 nm where the spectral response of light emitted from the window is within 20% of a blackbody radiator at the same CCT. The LED may emit a light that is converted by the light mixing cavity with a color conversion efficiency ratio greater than 130 lm/W where the light mixing cavity includes two photo-luminescent materials with a peak emission wavelengths between 508-528 nm and 615-655 nm.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: January 31, 2012
    Assignee: Xicato, Inc.
    Inventors: Gerard Harbers, Raghuram L. V. Petluri
  • Publication number: 20120002396
    Abstract: An illumination module includes a plurality of Light Emitting Diodes (LEDs) and a light conversion sub-assembly mounted near but physically separated from the LEDs. The light conversion sub-assembly includes at least a portion that is a polytetrafluoroethylene (PTFE) material that also includes a wavelength converting material. Despite being less reflective than other materials that may be used in the light conversion sub-assembly, the PTFE material unexpectedly produces an increase in luminous output, compared to other more reflective materials, when the PTFE material includes a wavelength converting material.
    Type: Application
    Filed: August 31, 2011
    Publication date: January 5, 2012
    Applicant: Xicato, Inc.
    Inventors: Peter K. Tseng, Gerard Harbers
  • Patent number: 8080828
    Abstract: Low profile, side-emitting LEDs are described that generate white light, where all light is emitted within a relatively narrow angle generally parallel to the surface of the light-generating active layer. The LEDs enable the creation of very thin backlights for backlighting an LCD. In one embodiment, the LED emits blue light and is a flip chip with the n and p electrodes on the same side of the LED. Separately from the LED, a transparent wafer has deposited on it a red and green phosphor layer. The phosphor color temperature emission is tested, and the color temperatures vs. positions along the wafer are mapped. A reflector is formed over the transparent wafer. The transparent wafer is singulated, and the phosphor/window dice are matched with the blue LEDs to achieve a target white light color temperature. The phosphor/window is then affixed to the LED.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: December 20, 2011
    Assignee: Philips Lumileds Lighting Company, LLC
    Inventors: Michael R. Krames, Gerd Mueller, Oleg Borisovich Shchekin, Mark Pugh, Gerard Harbers, John E. Epler, Serge Bierhuizen, Regina Mueller-Mach
  • Patent number: 8061884
    Abstract: Various embodiments of corner-coupled backlights are described, where one or more white light LEDs are optically coupled to a truncated corner edge of a solid rectangular light guide backlight. The one or more LEDs are mounted in a small reflective cavity, whose output opening is coupled to the truncated corner of the light guide. The reflective cavity provides a more uniform light distribution at a wide variety of angles to the face of the truncated corner to better distribute light throughout the entire light guide volume. To enable a thinner light guide, the LED die is positioned in the reflective cavity so that the major light emitting surface of the LED is parallel to the top surface of the light guide. The reflective cavity reflects the upward LED light toward the edge of the light guide.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: November 22, 2011
    Assignee: Philips Lumileds Lighting Company, LLC
    Inventors: Gerard Harbers, Mark Pugh, Serge Bierhuizen
  • Publication number: 20110267822
    Abstract: A mounting collar on a light fixture provides a compressive force between the illumination module and a light fixture. For example, a mounting collar that is fixed to the light fixture may engage with an illumination module to deform elastic mounting members on the illumination module to generate the compressive force. The mounting collar may include tapered features on first and second members that are moveable with respect to each other and that when engaged generate the compressive force. The mounting collar may include elastic mounting members on first and second members that move with respect to each other, wherein the movement deforms the elastic mounting members to generate the compressive force. The mounting collar may include an elastic member, wherein movement movement of the mounting collar relative to a light fixture deforms the elastic member to generate the compressive force.
    Type: Application
    Filed: July 13, 2011
    Publication date: November 3, 2011
    Applicant: XICATO, INC.
    Inventors: Gerard Harbers, Gregory W. Eng, Christopher R. Reed, Peter K. Tseng, John S. Yriberri
  • Publication number: 20110254554
    Abstract: A light emitting diode (LED) based illumination module performs on-board diagnostics. For example, diagnostics may include estimating elapsed lifetime, degradation of phosphor, thermal failure, failure of LEDs, or LED current adjustment based on measured flux or temperature. The elapsed lifetime may be estimated by scaling accumulated elapsed time of operation by an acceleration factor derived from actual operating conditions, such as temperature, current and relative humidity. The degradation of phosphor may be estimated based on a measured response of the phosphor to pulsed light from the LEDs. A thermal failure may be diagnosed using a transient response of the module from a start up condition. The failure of LEDs may be diagnosed based on measured forward voltage. The current for LEDs may adjusted using measured flux values and current values and a desired ratio of flux values. Additionally, the LED current may be scaled based on a measured temperature.
    Type: Application
    Filed: June 15, 2011
    Publication date: October 20, 2011
    Applicant: XICATO, INC.
    Inventor: Gerard Harbers