Patents by Inventor Gilbert Dewey

Gilbert Dewey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250031362
    Abstract: Monolithic two-dimensional (2D) arrays of double-sided DRAM cells including a frontside bit cell over a backside bit cell. Each double-sided cell includes a stacked transistor structure having at least a first transistor over a second transistor. Each double-sided cell further includes a first capacitor on a frontside of the stacked transistor structure and electrically coupled to a source/drain of the first transistor. Each double-sided cell further includes a second capacitor on a backside of the stacked transistor structure and electrically coupled to a source/drain of the second transistor. Frontside cell addressing interconnects are electrically coupled to other terminals of at least the first transistor while one or more backside addressing interconnects are electrically coupled to at least one terminal of the second transistor or second capacitor.
    Type: Application
    Filed: October 4, 2024
    Publication date: January 23, 2025
    Applicant: Intel Corporation
    Inventors: Cheng-Ying Huang, Ashish Agrawal, Gilbert Dewey, Abhishek A. Sharma, Wilfred Gomes, Jack Kavalieros
  • Patent number: 12191395
    Abstract: Disclosed herein are dual gate trench shaped thin film transistors and related methods and devices. Exemplary thin film transistor structures include a non-planar semiconductor material layer having a first portion extending laterally over a first gate dielectric layer, which is over a first gate electrode structure, and a second portion extending along a trench over the first gate dielectric layer, a second gate electrode structure at least partially within the trench, and a second gate dielectric layer between the second gate electrode structure and the first portion.
    Type: Grant
    Filed: October 25, 2023
    Date of Patent: January 7, 2025
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Van H. Le, Gilbert Dewey, Jack T. Kavalieros, Shriram Shivaraman, Benjamin Chu-Kung, Yih Wang, Tahir Ghani
  • Publication number: 20250008740
    Abstract: An integrated circuit device includes a stack of capacitors with a vertical first electrode coupled to a stack of individual second electrodes by an insulating storage material between first and second electrodes, and an access transistor coaxially aligned with, and coupled to, the vertical first electrode. The storage material may be a ferroelectric material. A gate dielectric of the access transistor may be around, and coaxial with, a channel region. The channel region may be vertically oriented and coaxial with the first electrode. A second access transistor may be similarly aligned with the first electrode and the stack of capacitors with the capacitor stack between the transistors. A channel of the second transistor may be around, and coaxial with, a gate dielectric. The transistors and capacitor stack may be in arrays of transistors and capacitor stacks. A self-aligned process may be used to form the capacitor and transistor arrays.
    Type: Application
    Filed: June 29, 2023
    Publication date: January 2, 2025
    Applicant: Intel Corporation
    Inventors: Wriddhi Chakraborty, Sourav Dutta, Nazila Haratipour, Sou-Chi Chang, Shriram Shivaraman, Gilbert Dewey, Uygar Avci
  • Patent number: 12183739
    Abstract: Integrated circuitry comprising a ribbon or wire (RoW) transistor stack within which the transistors have different threshold voltages (Vt). In some examples, a gate electrode of the transistor stack may include only one workfunction metal. A metal oxide may be deposited around one or more channels of the transistor stack as a solid-state source of a metal oxide species that will diffuse toward the channel region(s). As diffused, the metal oxide may remain (e.g., as a silicate, or hafnate) in close proximity to the channel region, thereby altering the dipole properties of the gate insulator material. Different channels of a transistor stack may be exposed to differing amounts or types of the metal oxide species to provide a range of Vt within the stack. After diffusion, the metal oxide may be stripped as sacrificial, or retained.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: December 31, 2024
    Assignee: Intel Corporation
    Inventors: Nicole Thomas, Eric Mattson, Sudarat Lee, Scott B. Clendenning, Tobias Brown-Heft, I-Cheng Tung, Thoe Michaelos, Gilbert Dewey, Charles Kuo, Matthew Metz, Marko Radosavljevic, Charles Mokhtarzadeh
  • Patent number: 12183668
    Abstract: Thin-film transistors and MIM capacitors in exclusion zones are described. In an example, an integrated circuit structure includes a semiconductor substrate having a zone with metal oxide semiconductor (MOS) transistors therein, and having a zone that excludes MOS transistors. A back-end-of-line (BEOL) structure is above the semiconductor substrate. A thin-film transistor (TFT) and/or a metal-insulator-metal (MIM) capacitor is in the BEOL structure. The TFT and/or MIM capacitor is vertically over the zone that excludes MOS transistors.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: December 31, 2024
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Willy Rachmady, Cheng-Ying Huang, Gilbert Dewey, Rajat Paul
  • Patent number: 12183831
    Abstract: Embodiments herein describe techniques for a semiconductor device, which may include a substrate, and a U-shaped channel above the substrate. The U-shaped channel may include a channel bottom, a first channel wall and a second channel wall parallel to each other, a source area, and a drain area. A gate dielectric layer may be above the substrate and in contact with the channel bottom. A gate electrode may be above the substrate and in contact with the gate dielectric layer. A source electrode may be coupled to the source area, and a drain electrode may be coupled to the drain area. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: December 31, 2024
    Assignee: Intel Corporation
    Inventors: Van H. Le, Abhishek A. Sharma, Benjamin Chu-Kung, Gilbert Dewey, Ravi Pillarisetty, Miriam R. Reshotko, Shriram Shivaraman, Li Huey Tan, Tristan A. Tronic, Jack T. Kavalieros
  • Patent number: 12170319
    Abstract: Embodiments disclosed herein include complementary metal-oxide-semiconductor (CMOS) devices and methods of forming CMOS devices. In an embodiment, a CMOS device comprises a first transistor with a first conductivity type, where the first transistor comprises a first source region and a first drain region, and a first metal over the first source region and the first drain region. In an embodiment, the CMOS device further comprises a second transistor with a second conductivity type opposite form the first conductivity type, where the second transistor comprises a second source region and a second drain region, a second metal over the second source region and the second drain region, and the first metal over the second metal.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: December 17, 2024
    Assignee: Intel Corporation
    Inventors: Kevin Cook, Anand S. Murthy, Gilbert Dewey, Nazila Haratipour, Ralph Thomas Troeger, Christopher J. Jezewski, I-Cheng Tung
  • Patent number: 12148806
    Abstract: A device is disclosed. The device includes a first epitaxial region, a second epitaxial region, a first gate region between the first epitaxial region and a second epitaxial region, a first dielectric structure underneath the first epitaxial region, a second dielectric structure underneath the second epitaxial region, a third epitaxial region underneath the first epitaxial region, a fourth epitaxial region underneath the second epitaxial region, and a second gate region between the third epitaxial region and a fourth epitaxial region and below the first gate region. The device also includes, a conductor via extending from the first epitaxial region, through the first dielectric structure and the third epitaxial region, the conductor via narrower at an end of the conductor via that contacts the first epitaxial region than at an opposite end.
    Type: Grant
    Filed: January 9, 2024
    Date of Patent: November 19, 2024
    Assignee: Intel Corporation
    Inventors: Ehren Mannebach, Aaron Lilak, Hui Jae Yoo, Patrick Morrow, Anh Phan, Willy Rachmady, Cheng-Ying Huang, Gilbert Dewey
  • Patent number: 12142689
    Abstract: A transistor is described. The transistor includes a substrate, a first semiconductor structure above the substrate, a second semiconductor structure above the substrate, a source contact that includes a first metal structure that contacts a plurality of surfaces of the first semiconductor structure and a drain contact that includes a second metal structure that contacts a plurality of surfaces of the second semiconductor structure. The transistor also includes a gate below a back side of the substrate.
    Type: Grant
    Filed: September 8, 2022
    Date of Patent: November 12, 2024
    Assignee: Intel Corporation
    Inventors: Sean Ma, Abhishek Sharma, Gilbert Dewey, Jack T. Kavalieros, Van H. Le
  • Publication number: 20240371700
    Abstract: Backside contact structures include etch selective materials to facilitate backside contact formation. An integrated circuit structure includes a frontside contact region, a device region below the frontside contact region, and a backside contact region below the device region. The device region includes a transistor. The backside contact region includes a first dielectric material under a source or drain region of the transistor, a second dielectric material laterally adjacent to the first dielectric material and under a gate structure of the transistor. A non-conductive spacer is between the first and second dielectric materials. The first and second dielectric materials are selectively etchable with respect to one another and the spacer. The backside contact region may include an interconnect feature that, for instance, passes through the first dielectric material and contacts a bottom side of the source/drain region, and/or passes through the second dielectric material and contacts the gate structure.
    Type: Application
    Filed: July 16, 2024
    Publication date: November 7, 2024
    Applicant: Intel Corporation
    Inventors: Aaron D. LILAK, Ehren MANNEBACH, Anh PHAN, Richard E. SCHENKER, Stephanie A. BOJARSKI, Willy RACHMADY, Patrick R. MORROW, Jeffrey D. BIELEFELD, Gilbert DEWEY, Hui Jae YOO
  • Patent number: 12125917
    Abstract: Thin film transistors having double gates are described. In an example, an integrated circuit structure includes an insulator layer above a substrate. A first gate stack is on the insulator layer. A polycrystalline channel material layer is on the first gate stack. A second gate stack is on a first portion of the polycrystalline channel material layer, the second gate stack having a first side opposite a second side. A first conductive contact is adjacent the first side of the second gate stack, the first conductive contact on a second portion of the channel material layer. A second conductive contact is adjacent the second side of the second gate stack, the second conductive contact on a third portion of the channel material layer.
    Type: Grant
    Filed: July 27, 2023
    Date of Patent: October 22, 2024
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Van H. Le, Jack T. Kavalieros, Tahir Ghani, Gilbert Dewey
  • Publication number: 20240347610
    Abstract: Embodiments disclosed herein include transistor devices and methods of making such devices. In an embodiment, the transistor device comprises a stack of semiconductor channels with a first source/drain region on a first end of the semiconductor channels and a second source/drain region on a second end of the semiconductor channels. In an embodiment, the first source/drain region and the second source/drain region have a top surface and a bottom surface. In an embodiment, the transistor device further comprises a first source/drain contact electrically coupled to the top surface of the first source/drain region, and a second source/drain contact electrically coupled to the bottom surface of the second source/drain region. In an embodiment, the second source/drain contact is separated from the second source/drain region by an interfacial layer.
    Type: Application
    Filed: June 27, 2024
    Publication date: October 17, 2024
    Inventors: Koustav GANGULY, Ryan KEECH, Subrina RAFIQUE, Glenn A. GLASS, Anand S. MURTHY, Ehren MANNEBACH, Mauro KOBRINSKY, Gilbert DEWEY
  • Patent number: 12119387
    Abstract: Low resistance approaches for fabricating contacts, and semiconductor structures having low resistance metal contacts, are described. In an example, an integrated circuit structure includes a semiconductor structure above a substrate. A gate electrode is over the semiconductor structure, the gate electrode defining a channel region in the semiconductor structure. A first semiconductor source or drain structure is at a first end of the channel region at a first side of the gate electrode. A second semiconductor source or drain structure is at a second end of the channel region at a second side of the gate electrode, the second end opposite the first end. A source or drain contact is directly on the first or second semiconductor source or drain structure, the source or drain contact including a barrier layer and an inner conductive structure.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: October 15, 2024
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Nazila Haratipour, Siddharth Chouksey, Jack T. Kavalieros, Jitendra Kumar Jha, Matthew V. Metz, Mengcheng Lu, Anand S. Murthy, Koustav Ganguly, Ryan Keech, Glenn A. Glass, Arnab Sen Gupta
  • Patent number: 12120865
    Abstract: Monolithic two-dimensional (2D) arrays of double-sided DRAM cells including a frontside bit cell over a backside bit cell. Each double-sided cell includes a stacked transistor structure having at least a first transistor over a second transistor. Each double-sided cell further includes a first capacitor on a frontside of the stacked transistor structure and electrically coupled to a source/drain of the first transistor. Each double-sided cell further includes a second capacitor on a backside of the stacked transistor structure and electrically coupled to a source/drain of the second transistor. Frontside cell addressing interconnects are electrically coupled to other terminals of at least the first transistor while one or more backside addressing interconnects are electrically coupled to at least one terminal of the second transistor or second capacitor.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: October 15, 2024
    Assignee: Intel Corporation
    Inventors: Cheng-Ying Huang, Ashish Agrawal, Gilbert Dewey, Abhishek A. Sharma, Wilfred Gomes, Jack Kavalieros
  • Patent number: 12119409
    Abstract: An integrated circuit includes: a gate dielectric; a first layer adjacent to the gate dielectric; a second layer adjacent to the first layer, the second layer comprising an amorphous material; a third layer adjacent to the second layer, the third layer comprising a crystalline material; and a source or drain at least partially adjacent to the third layer. In some cases, the crystalline material of the third layer is a first crystalline material, and the first layer comprises a second crystalline material, which may be the same as or different from the first crystalline material. In some cases, the gate dielectric includes a high-K dielectric material. In some cases, the gate dielectric, the first layer, the second layer, the third layer, and the source or drain are part of a back-gate transistor structure (e.g., back-gate TFT), which may be part of a memory structure (e.g., located within an interconnect structure).
    Type: Grant
    Filed: June 30, 2023
    Date of Patent: October 15, 2024
    Assignee: Intel Corporation
    Inventors: Van H. Le, Abhishek A. Sharma, Gilbert Dewey, Kent Millard, Jack Kavalieros, Shriram Shivaraman, Tristan A. Tronic, Sanaz Gardner, Justin R. Weber, Tahir Ghani, Li Huey Tan, Kevin Lin
  • Patent number: 12107085
    Abstract: Stacked transistor structures having a conductive interconnect between source/drain regions of upper and lower transistors. In some embodiments, the interconnect is provided, at least in part, by highly doped epitaxial material deposited in the upper transistor's source/drain region. In such cases, the epitaxial material seeds off of an exposed portion of semiconductor material of or adjacent to the upper transistor's channel region and extends downward into a recess that exposes the lower transistor's source/drain contact structure. The epitaxial source/drain material directly contacts the lower transistor's source/drain contact structure, to provide the interconnect. In other embodiments, the epitaxial material still seeds off the exposed semiconductor material of or proximate to the channel region and extends downward into the recess, but need not contact the lower contact structure.
    Type: Grant
    Filed: July 7, 2023
    Date of Patent: October 1, 2024
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Gilbert Dewey, Cheng-Ying Huang, Christopher Jezewski, Ehren Mannebach, Rishabh Mehandru, Patrick Morrow, Anand S. Murthy, Anh Phan, Willy Rachmady
  • Patent number: 12087750
    Abstract: A stacked-substrate FPGA device is described in which a second substrate is stacked over a first substrate. Logic transistors (e.g., semiconductor devices and at least some conductive interconnections between them) are generally fabricated on (or over) a first substrate and memory transistors (e.g., SRAM cells and SRAM arrays) are generally fabricated on a second substrate over the first substrate. This has the effect of physically disposing elements of a CLB and a programmable switch on two different substrates. That is a first portion of a CLB and a programmable switch corresponding to logic transistors are on a first substrate and a second portion of these components of an FPGA corresponding to SRAM transistors is on a second substrate.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: September 10, 2024
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Willy Rachmady, Ravi Pillarisetty, Gilbert Dewey, Jack T. Kavalieros
  • Patent number: 12080605
    Abstract: Backside contact structures include etch selective materials to facilitate backside contact formation. An integrated circuit structure includes a frontside contact region, a device region below the frontside contact region, and a backside contact region below the device region. The device region includes a transistor. The backside contact region includes a first dielectric material under a source or drain region of the transistor, a second dielectric material laterally adjacent to the first dielectric material and under a gate structure of the transistor. A non-conductive spacer is between the first and second dielectric materials. The first and second dielectric materials are selectively etchable with respect to one another and the spacer. The backside contact region may include an interconnect feature that, for instance, passes through the first dielectric material and contacts a bottom side of the source/drain region, and/or passes through the second dielectric material and contacts the gate structure.
    Type: Grant
    Filed: July 15, 2022
    Date of Patent: September 3, 2024
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Ehren Mannebach, Anh Phan, Richard E. Schenker, Stephanie A. Bojarski, Willy Rachmady, Patrick R. Morrow, Jeffrey D. Bielefeld, Gilbert Dewey, Hui Jae Yoo
  • Patent number: 12068319
    Abstract: Techniques are disclosed for integrating semiconductor oxide materials as alternate channel materials for n-channel devices in integrated circuits. The semiconductor oxide material may have a wider band gap than the band gap of silicon. Additionally or alternatively, the high mobility, wide band gap semiconductor oxide material may have a higher electron mobility than silicon. The use of such semiconductor oxide materials can provide improved NMOS channel performance in the form of less off-state leakage and, in some instances, improved electron mobility as compared to silicon NMOS channels.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: August 20, 2024
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Willy Rachmady, Jack T. Kavalieros, Cheng-Ying Huang, Matthew V. Metz, Sean T. Ma, Harold Kennel, Tahir Ghani, Abhishek A. Sharma
  • Publication number: 20240234422
    Abstract: Embodiments disclosed herein include stacked forksheet transistor devices, and methods of fabricating stacked forksheet transistor devices. In an example, an integrated circuit structure includes a backbone. A first transistor device includes a first vertical stack of semiconductor channels adjacent to an edge of the backbone. A second transistor device includes a second vertical stack of semiconductor channels adjacent to the edge of the backbone. The second transistor device is stacked on the first transistor device.
    Type: Application
    Filed: March 22, 2024
    Publication date: July 11, 2024
    Inventors: Cheng-Ying HUANG, Gilbert DEWEY, Anh PHAN, Nicole K. THOMAS, Urusa ALAAN, Seung Hoon SUNG, Christopher M. NEUMANN, Willy RACHMADY, Patrick MORROW, Hui Jae YOO, Richard E. SCHENKER, Marko RADOSAVLJEVIC, Jack T. KAVALIEROS, Ehren MANNEBACH