Patents by Inventor Glenn A. Glass

Glenn A. Glass has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190207015
    Abstract: Techniques are disclosed for forming increasing channel region tensile strain in n-MOS devices. In some cases, increased channel region tensile strain can be achieved via S/D material engineering that deliberately introduces dislocations in one or both of the S/D regions to produce tensile strain in the adjacent channel region. In some such cases, the S/D material engineering to create desired dislocations may include using a lattice mismatched epitaxial S/D film adjacent to the channel region. Numerous material schemes for achieving multiple dislocations in one or both S/D regions will be apparent in light of this disclosure. In some cases, a cap layer can be formed on an S/D region to reduce contact resistance, such that the cap layer is an intervening layer between the S/D region and S/D contact. The cap layer includes different material than the underlying S/D region and/or a higher dopant concentration to reduce contact resistance.
    Type: Application
    Filed: September 27, 2016
    Publication date: July 4, 2019
    Applicant: INTEL CORPORATION
    Inventors: RISHABH MEHANDRU, CORY E. WEBER, ANAND S. MURTHY, KARTHIK JAMBUNATHAN, GLENN A. GLASS, JIONG ZHANG, RITESH JHAVERI, SZUYA S. LIAO
  • Publication number: 20190198658
    Abstract: Techniques are disclosed for forming group III-V material transistors employing nitride-based dopant diffusion barrier layers. The techniques can include growing the dilute nitride-based barrier layer as a relatively thin layer of III-V material in the sub-channel (or sub-fin) region of a transistor, near the substrate/III-V material interface, for example. Such a nitride-based barrier layer can be used to trap atoms from the substrate at vacancy sites within the III-V material. Therefore, the barrier layer can arrest substrate atoms from diffusing in an undesired manner by protecting the sub-channel layer from being unintentionally doped due to subsequent processing in the transistor fabrication. In addition, by forming the barrier layer pseudomorphically, the lattice mismatch of the barrier layer with the sub-channel layer in the heterojunction stack becomes insignificant. In some embodiments, the group III-V alloyed with nitrogen (N) material may include an N concentration of less than 5, 2, or 1.
    Type: Application
    Filed: September 29, 2016
    Publication date: June 27, 2019
    Applicant: INTEL CORPORATION
    Inventors: Chandra S. Mohapatra, Harold W. Kennel, Glenn A. Glass, Willy Rachmady, Anand S. Murthy, Gilbert Dewey, Jack T. Kavalieros, Tahir Ghani, Matthew V. Metz, Sean T. Ma
  • Publication number: 20190189749
    Abstract: A subfin leakage problem with respect to the silicon-germanium (SiGe)/shallow trench isolation (STI) interface can be mitigated with a halo implant. A halo implant is used to form a highly resistive layer. For example, a silicon substrate layer 204 is coupled to a SiGe layer, which is coupled to a germanium (Ge) layer. A gate is disposed on the Ge layer. An implant is implanted in the Ge layer that causes the layer to become more resistive. However, an area does not receive the implant due to being protected (or covered) by the gate. The area remains less resistive than the remainder of the Ge layer. In some embodiments, the resistive area of a Ge layer can be etched and/or an undercuttage (etch undercut or EUC) can be performed to expose the unimplanted Ge area of the Ge layer.
    Type: Application
    Filed: September 28, 2016
    Publication date: June 20, 2019
    Applicant: INTEL CORPORATION
    Inventors: Benjamin Chu-Kung, Van Le, Seung Hoon Sung, Jack Kavalieros, Ashish Agrawal, Harold Kennel, Siddharth Chouksey, Anand Murthy, Tahir Ghani, Glenn Glass, Cheng-Ying Huang
  • Publication number: 20190189755
    Abstract: Techniques are disclosed for forming transistors including source and drain (S/D) regions employing double-charge dopants. As can be understood based on this disclosure, the use of double-charge dopants for group IV semiconductor material (e.g., Si, Ge, SiGe) either alone or in combination with single-charge dopants (e.g., P, As, B) can decrease the energy barrier at the semiconductor/metal interface between the source and drain regions (semiconductor) and their respective contacts (metal), thereby improving (by reducing) contact resistance at the S/D locations. In some cases, the double-charge dopants may be provided in a top or cap S/D portion of a given S/D region, for example, so that the double-charge doped S/D material is located at the interface of that S/D region and the corresponding contact. The double-charge dopants can include sulfur (S), selenium (Se), and/or tellurium (Te). Other suitable group IV material double-charge dopants will be apparent in light of this disclosure.
    Type: Application
    Filed: September 30, 2016
    Publication date: June 20, 2019
    Applicant: INTEL CORPORATION
    Inventors: Glenn A. Glass, Anand S. Murthy, Tahir Ghani
  • Publication number: 20190189794
    Abstract: Techniques are disclosed for forming high mobility NMOS fin-based transistors having an indium-rich channel region electrically isolated from the sub-fin by an aluminum-containing layer. The aluminum aluminum-containing layer may be provisioned within an indium-containing layer that includes the indium-rich channel region, or may be provisioned between the indium-containing layer and the sub-fin. The indium concentration of the indium-containing layer may be graded from an indium-poor concentration near the aluminum-containing barrier layer to an indium-rich concentration at the indium-rich channel layer. The indium-rich channel layer is at or otherwise proximate to the top of the fin, according to some example embodiments. The grading can be intentional and/or due to the effect of reorganization of atoms at the interface of indium-rich channel layer and the aluminum-containing barrier layer. Numerous variations and embodiments will be appreciated in light of this disclosure.
    Type: Application
    Filed: February 23, 2019
    Publication date: June 20, 2019
    Applicant: INTEL CORPORATION
    Inventors: CHANDRA S. MOHAPATRA, ANAND S. MURTHY, GLENN A. GLASS, TAHIR GHANI, WILLY RACHMADY, JACK T. KAVALIEROS, GILBERT DEWEY, MATTHEW V. METZ, HAROLD W. KENNEL
  • Publication number: 20190189785
    Abstract: Integrated circuit transistor structures are disclosed that include a gate structure that is lattice matched to the underlying channel. In particular, the gate dielectric is lattice matched to the underlying semiconductor channel material, and in some embodiments, so is the gate electrode. In an example embodiment, single crystal semiconductor channel material and single crystal gate dielectric material that are sufficiently lattice matched to each other are epitaxially deposited. In some cases, the gate electrode material may also be a single crystal material that is lattice matched to the semiconductor channel material, thereby allowing the gate electrode to impart strain on the channel via the also lattice matched gate dielectric. A gate dielectric material that is lattice matched to the channel material can be used to reduce interface trap density (Dit). The techniques can be used in both planar and non-planar (e.g., finFET and nanowire) metal oxide semiconductor (MOS) transistor architectures.
    Type: Application
    Filed: September 28, 2016
    Publication date: June 20, 2019
    Applicant: INTEL CORPORATION
    Inventors: KARTHIK JAMBUNATHAN, GLENN A. GLASS, ANAND S. MURTHY, JACK T. KAVALIEROS, SEUNG HOON SUNG, BENJAMIN CHU-KUNG, TAHIR GHANI
  • Patent number: 10304927
    Abstract: Techniques are disclosed for forming transistor devices having reduced parasitic contact resistance relative to conventional devices. The techniques can be implemented, for example, using a standard contact stack such as a series of metals on, for example, silicon or silicon germanium (SiGe) source/drain regions. In accordance with one example such embodiment, an intermediate boron doped germanium layer is provided between the source/drain and contact metals to significantly reduce contact resistance. Numerous transistor configurations and suitable fabrication processes will be apparent in light of this disclosure, including both planar and non-planar transistor structures (e.g., FinFETs), as well as strained and unstrained channel structures. Graded buffering can be used to reduce misfit dislocation. The techniques are particularly well-suited for implementing p-type devices, but can be used for n-type devices if so desired.
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: May 28, 2019
    Assignee: INTEL CORPORATION
    Inventors: Glenn A. Glass, Anand S. Murthy, Tahir Ghani
  • Publication number: 20190157310
    Abstract: Techniques are disclosed for backside contact resistance reduction for semiconductor devices with metallization on both sides (MOBS). In some embodiments, the techniques described herein provide methods to recover low contact resistance that would otherwise be present with making backside contacts, thereby reducing or eliminating parasitic external resistance that degrades transistor performance. In some embodiments, the techniques include adding an epitaxial deposition of very highly doped crystalline semiconductor material in backside contact trenches to provide enhanced ohmic contact properties. In some cases, a backside source/drain (S/D) etch-stop layer may be formed below the replacement S/D regions of the one or more transistors formed on the transfer wafer (during frontside processing), such that when backside contact trenches are being formed, the backside S/D etch-stop layer may help stop the backside contact etch process before consuming a portion or all of the S/D material.
    Type: Application
    Filed: July 1, 2016
    Publication date: May 23, 2019
    Applicant: INTEL CORPORATION
    Inventors: GLENN A. GLASS, ANAND S. MURTHY, KARTHIK JAMBUNATHAN, CHANDRA S. MOHAPATRA, MAURO J. KOBRINSKY, PATRICK MORROW
  • Patent number: 10297670
    Abstract: Techniques are disclosed for forming transistor devices having reduced parasitic contact resistance relative to conventional devices. The techniques can be implemented, for example, using a standard contact stack such as a series of metals on, for example, silicon or silicon germanium (SiGe) source/drain regions. In accordance with one example such embodiment, an intermediate boron doped germanium layer is provided between the source/drain and contact metals to significantly reduce contact resistance. Numerous transistor configurations and suitable fabrication processes will be apparent in light of this disclosure, including both planar and non-planar transistor structures (e.g., FinFETs), as well as strained and unstrained channel structures. Graded buffering can be used to reduce misfit dislocation. The techniques are particularly well-suited for implementing p-type devices, but can be used for n-type devices if so desired.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: May 21, 2019
    Assignee: INTEL CORPORATION
    Inventors: Glenn A. Glass, Anand S. Murthy, Tahir Ghani
  • Publication number: 20190148378
    Abstract: Monolithic FETs including a majority carrier channel in a first high carrier mobility semiconductor material disposed over a substrate. While a mask, such as a gate stack or sacrificial gate stack, is covering a lateral channel region, a spacer of a high carrier mobility semiconductor material is overgrown, for example wrapping around a dielectric lateral spacer, to increase effective spacing between the transistor source and drain without a concomitant increase in transistor footprint. Source/drain regions couple electrically to the lateral channel region through the high-mobility semiconductor spacer, which may be substantially undoped (i.e. intrinsic). With effective channel length for a given lateral gate dimension increased, the transistor footprint for a given off-state leakage may be reduced or off-state source/drain leakage for a given transistor footprint may be reduced, for example.
    Type: Application
    Filed: January 8, 2019
    Publication date: May 16, 2019
    Applicant: Intel Corporation
    Inventors: Gilbert DEWEY, Matthew V. METZ, Anand S. MURTHY, Tahir GHANI, Willy RACHMADY, Chandra S. MOHAPATRA, Jack T. KAVALIEROS, Glenn A. GLASS
  • Patent number: 10290709
    Abstract: Transistor devices having indium gallium arsenide active channels, and processes for the fabrication of the same, that enables improved carrier mobility when fabricating fin shaped active channels, such as those used in tri-gate or gate all around (GAA) devices. In one embodiment, an indium gallium arsenide material may be deposited in narrow trenches which may result in a fin that has indium rich surfaces and a gallium rich central portion. These indium rich surfaces will abut a gate oxide of a transistor and may result in high electron mobility and an improved switching speed relative to conventional homogeneous composition indium gallium arsenide active channels.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: May 14, 2019
    Assignee: Intel Corporation
    Inventors: Glenn A. Glass, Anand S. Murthy, Chandra S. Mohapatra, Tahir Ghani, Willy Rachmady, Gilbert Dewey, Matthew V. Metz, Jack T. Kavalieros
  • Publication number: 20190115466
    Abstract: Techniques are disclosed for incorporating high mobility strained channels into fin-based NMOS transistors (e.g., FinFETs such as double-gate, trigate, etc), wherein a stress material is cladded onto the channel area of the fin. In one example embodiment, a germanium or silicon germanium film is cladded onto silicon fins in order to provide a desired tensile strain in the core of the fin, although other fin and cladding materials can be used. The techniques are compatible with typical process flows, and cladding deposition can occur at a plurality of locations within typical process flow. In various embodiments, fins may be formed with a minimum width (or later thinned) so as to improve transistor performance. In some embodiments, a thinned fin also increases tensile strain across the core of a cladded fin. In some cases, strain in the core may be further enhanced by adding an embedded silicon epitaxial source and drain.
    Type: Application
    Filed: December 10, 2018
    Publication date: April 18, 2019
    Applicant: INTEL CORPORATION
    Inventors: STEPHEN M. CEA, ROZA KOTLYAR, HAROLD W. KENNEL, GLENN A. GLASS, ANAND S. MURTHY, WILLY RACHMADY, TAHIR GHANI
  • Publication number: 20190109234
    Abstract: Techniques are disclosed for improved integration of germanium (Ge)-rich p-MOS source/drain contacts to, for example, reduce contact resistance. The techniques include depositing the p-type Ge-rich layer directly on a silicon (Si) surface in the contact trench location, because Si surfaces are favorable for deposition of high quality conductive Ge-rich materials. In one example method, the Ge-rich layer is deposited on a surface of the Si substrate in the source/drain contact trench locations, after removing a sacrificial silicon germanium (SiGe) layer previously deposited in the source/drain locations. In another example method, the Ge-rich layer is deposited on a Si cladding layer in the contact trench locations, where the Si cladding layer is deposited on a functional p-type SiGe layer. In some cases, the Ge-rich layer comprises at least 50% Ge (and may contain tin (Sn) and/or Si) and is boron (B) doped at levels above 1E20 cm?3.
    Type: Application
    Filed: November 26, 2018
    Publication date: April 11, 2019
    Applicant: INTEL CORPORATION
    Inventors: GLENN A. GLASS, ANAND S. MURTHY, TAHIR GHANI, YING PANG, NABIL G. MISTKAWI
  • Patent number: 10243078
    Abstract: An embodiment includes a device comprising: a trench that includes a doped trench material having: (a)(i) a first bulk lattice constant and (a)(ii) at least one of a group III-V material and a group IV material; a fin structure, directly over the trench, including fin material having: (b) (ii) a second bulk lattice constant and (b)(ii) at least one of a group III-V material and a group IV material; a barrier layer, within the trench and directly contacting a bottom surface of the fin, including a barrier layer material having a third bulk lattice constant; wherein (a) the trench has an aspect ratio (depth to width) of at least 1.5:1, and (b) the barrier layer has a height not greater than a critical thickness for the barrier layer material. Other embodiments are described herein.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: March 26, 2019
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Matthew V. Metz, Jack T. Kavalieros, Willy Rachmady, Tahir Ghani, Anand S. Murthy, Chandra S. Mohapatra, Harold W. Kennel, Glenn A. Glass
  • Patent number: 10229997
    Abstract: Techniques are disclosed for forming high mobility NMOS fin-based transistors having an indium-rich channel region electrically isolated from the sub-fin by an aluminum-containing layer. The aluminum aluminum-containing layer may be provisioned within an indium-containing layer that includes the indium-rich channel region, or may be provisioned between the indium-containing layer and the sub-fin. The indium concentration of the indium-containing layer may be graded from an indium-poor concentration near the aluminum-containing barrier layer to an indium-rich concentration at the indium-rich channel layer. The indium-rich channel layer is at or otherwise proximate to the top of the fin, according to some example embodiments. The grading can be intentional and/or due to the effect of reorganization of atoms at the interface of indium-rich channel layer and the aluminum-containing barrier layer. Numerous variations and embodiments will be appreciated in light of this disclosure.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: March 12, 2019
    Assignee: INTEL CORPORATION
    Inventors: Chandra S. Mohapatra, Anand S. Murthy, Glenn A. Glass, Tahir Ghani, Willy Rachmady, Jack T. Kavalieros, Gilbert Dewey, Matthew V. Metz, Harold W. Kennel
  • Patent number: 10211208
    Abstract: Monolithic FETs including a majority carrier channel in a first high carrier mobility semiconductor material disposed over a substrate. While a mask, such as a gate stack or sacrificial gate stack, is covering a lateral channel region, a spacer of a high carrier mobility semiconductor material is overgrown, for example wrapping around a dielectric lateral spacer, to increase effective spacing between the transistor source and drain without a concomitant increase in transistor footprint. Source/drain regions couple electrically to the lateral channel region through the high-mobility semiconductor spacer, which may be substantially undoped (i.e. intrinsic). With effective channel length for a given lateral gate dimension increased, the transistor footprint for a given off-state leakage may be reduced or off-state source/drain leakage for a given transistor footprint may be reduced, for example.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: February 19, 2019
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Matthew V. Metz, Anand S. Murthy, Tahir Ghani, Willy Rachmady, Chandra S. Mohapatra, Jack T. Kavalieros, Glenn A. Glass
  • Publication number: 20190043993
    Abstract: Techniques are disclosed for forming transistors including one or more group III-V semiconductor material nanowires using sacrificial group IV semiconductor material layers. In some cases, the transistors may include a gate-all-around (GAA) configuration. In some cases, the techniques may include forming a replacement fin stack that includes group III-V material layer (such as indium gallium arsenide, indium arsenide, or indium antimonide) formed on a group IV material buffer layer (such as silicon, germanium, or silicon germanium), such that the group IV buffer layer can be later removed using a selective etch process to leave the group III-V material for use as a nanowire in a transistor channel. In some such cases, the group III-V material layer may be grown pseudomorphically to the underlying group IV material, so as to not form misfit dislocations. The techniques may be used to form transistors including any number of nanowires.
    Type: Application
    Filed: March 11, 2016
    Publication date: February 7, 2019
    Applicant: INTEL CORPORATION
    Inventors: CHANDRA S. MOHAPATRA, GLENN A. GLASS, ANAND S. MURTHY, KARTHIK JAMBUNATHAN, WILLY RACHMADY, GILBERT DEWEY, TAHIR GHANI, JACK T. KAVALIEROS
  • Publication number: 20190035926
    Abstract: A replacement fin layer is deposited on a sub-fin layer in trenches isolated by an insulating layer on a substrate. The replacement fin layer has first component rich side portions and a second component rich core portion. The second component rich core portion is etched to generate a double fin structure comprising the first component rich fins.
    Type: Application
    Filed: March 30, 2016
    Publication date: January 31, 2019
    Applicant: Intel Corporation
    Inventors: Chandra S. MOHAPATRA, Glenn A. GLASS, Anand S. MURTHY, Karthik JAMBUNATHAN
  • Publication number: 20190035893
    Abstract: Techniques and methods related to strained NMOS and PMOS devices without relaxed substrates, systems incorporating such semiconductor devices, and methods therefor may include a semiconductor device that may have both n-type and p-type semiconductor bodies. Both types of semiconductor bodies may be formed from an initially strained semiconductor material such as silicon germanium. A silicon cladding layer may then be provided at least over or on the n-type semiconductor body. In one example, a lower portion of the semiconductor bodies is formed by a Si extension of the wafer or substrate. By one approach, an upper portion of the semiconductor bodies, formed of the strained SiGe, may be formed by blanket depositing the strained SiGe layer on the Si wafer, and then etching through the SiGe layer and into the Si wafer to form the semiconductor bodies or fins with the lower and upper portions.
    Type: Application
    Filed: October 1, 2018
    Publication date: January 31, 2019
    Inventors: Stephen M. Cea, Roza Kotlyar, Harold W. Kennel, Anand S. Murthy, Glenn A. Glass, Kelin J. Kuhn, Tahir Ghani
  • Publication number: 20190035889
    Abstract: Transistor devices having an indium-containing ternary or greater III-V compound active channels, and processes for the fabrication of the same, may be formed that enables improved carrier mobility when fabricating fin shaped active channels, such as those used in tri-gate or gate all around (GAA) devices. In one embodiment, an indium-containing ternary or greater III-V compound may be deposited in narrow trenches on a reconstructed upper surface of a sub-structure, which may result in a fin that has indium rich side surfaces and an indium rich bottom surface. These indium rich surfaces will abut a gate oxide of a transistor and may result in high electron mobility and an improved switching speed relative to conventional homogeneous compositions of indium-containing ternary or greater III-V compound active channels.
    Type: Application
    Filed: February 22, 2016
    Publication date: January 31, 2019
    Applicant: Intel Corporation
    Inventors: Chandra S. Mohapatra, Anand S. Murthy, Glenn A. Glass, Matthew V. Metz, Willy Rachmady, Gilbert Dewey, Tahir Ghani, Jack T. Kavalieros