Patents by Inventor Glenn Rinne

Glenn Rinne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160322334
    Abstract: A semiconductor package and manufacturing method thereof are disclosed and may include a first semiconductor device comprising a first bond pad on a first surface of the first semiconductor device, a first encapsulant material surrounding side edges of the first semiconductor device, and a redistribution layer (RDL) formed on the first surface of the first semiconductor device and on a first surface of the encapsulant material. The RDL may electrically couple the first bond pad to a second bond pad formed above the first surface of the encapsulant material. A second semiconductor device comprising a third bond pad on a first surface of the second semiconductor device may face the first surface of the first semiconductor device and be electrically coupled to the first bond pad on the first semiconductor device. The first surface of the first semiconductor device may be coplanar with the first surface of the encapsulant material.
    Type: Application
    Filed: July 15, 2016
    Publication date: November 3, 2016
    Inventors: Jin Young Kim, No Sun Park, Yoon Joo Kim, Choon Heung Lee, Jin Han Kim, Seung Jae Lee, Se Woong Cha, Sung Kyu Kim, Glenn Rinne
  • Patent number: 9412729
    Abstract: A semiconductor package includes a first package comprising a circuit board and a first semiconductor die mounded on the circuit board, and a second package comprising a mounting board. At least one second semiconductor die may be mounted on the mounting board, and one or more leads may be electrically connected to the mounting board and/or the second semiconductor die. An adhesion member may bond the first package to the second package, and an encapsulant may encapsulate the first package and the second package. the circuit board, the mounting board, and the one or more leads may be arranged to surround the first semiconductor die and the second semiconductor die, and the plurality of leads may be electrically connected to the circuit board and to a constant potential or ground, to reduce the effects of external electromagnetic interference upon the semiconductor package.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: August 9, 2016
    Assignee: Amkor Technology, Inc.
    Inventors: Ji Young Chung, Choon Heung Lee, Glenn Rinne, Byong Jin Kim
  • Patent number: 9406639
    Abstract: A semiconductor package and manufacturing method thereof are disclosed and may include a first semiconductor device comprising a first bond pad on a first surface of the first semiconductor device, a first encapsulant material surrounding side edges of the first semiconductor device, and a redistribution layer (RDL) formed on the first surface of the first semiconductor device and on a first surface of the encapsulant material. The RDL may electrically couple the first bond pad to a second bond pad formed above the first surface of the encapsulant material. A second semiconductor device comprising a third bond pad on a first surface of the second semiconductor device may face the first surface of the first semiconductor device and be electrically coupled to the first bond pad on the first semiconductor device. The first surface of the first semiconductor device may be coplanar with the first surface of the encapsulant material.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: August 2, 2016
    Assignee: Amkor Technology, Inc.
    Inventors: Jin Young Kim, No Sun Park, Yoon Joo Kim, Choon Heung Lee, Jin Han Kim, Seung Jae Lee, Se Woong Cha, Sung Kyu Kim, Glenn Rinne
  • Publication number: 20160056055
    Abstract: A semiconductor device structure and a method for manufacturing a semiconductor device. As a non-limiting example, various aspects of this disclosure provide a method for manufacturing a semiconductor device that comprises ordering and performing processing steps in a manner that prevents warpage deformation from occurring to a wafer and/or die due to mismatching thermal coefficients.
    Type: Application
    Filed: April 21, 2015
    Publication date: February 25, 2016
    Inventors: Yeong Beom Ko, Jin Han Kim, Dong Jin Kim, Do Hyung Kim, Glenn Rinne
  • Publication number: 20150340332
    Abstract: Methods for copper pillar protection may include forming a metal post over a contact on a semiconductor die, where the metal post comprises a sidewall. A metal cap may be formed on the metal post and may be wider than the width of the metal post. A solder bump may be formed on the metal cap, and a conformal passivation layer may be formed on at least the sidewall of the metal post. The metal cap may be rounded shaped or rectangular shaped in cross-section. The metal post and the metal cap may comprise copper. The metal cap may comprise a copper layer and a nickel layer. The seed metal layer may comprise one or more of titanium, tungsten, and copper. The conformal passivation layer may comprise a nonwettable polymer. Horizontal portions of the conformal passivation layer may be removed utilizing an anisotropic etch such as a plasma etch.
    Type: Application
    Filed: May 23, 2014
    Publication date: November 26, 2015
    Applicant: Amkor Technology, Inc.
    Inventors: Glenn Rinne, Dean Zehnder, Christopher J. Berry, Robert Lanzone, Ludovico Bancod
  • Publication number: 20150041975
    Abstract: A semiconductor package includes a first package comprising a circuit board and a first semiconductor die mounded on the circuit board, and a second package comprising a mounting board. At least one second semiconductor die may be mounted on the mounting board, and one or more leads may be electrically connected to the mounting board and/or the second semiconductor die. An adhesion member may bond the first package to the second package, and an encapsulant may encapsulate the first package and the second package. the circuit board, the mounting board, and the one or more leads may be arranged to surround the first semiconductor die and the second semiconductor die, and the plurality of leads may be electrically connected to the circuit board and to a constant potential or ground, to reduce the effects of external electromagnetic interference upon the semiconductor package.
    Type: Application
    Filed: August 11, 2014
    Publication date: February 12, 2015
    Inventors: Ji Young Chung, Choon Heung Lee, Glenn Rinne, Byong Jin Kim
  • Publication number: 20140147970
    Abstract: Provided are a semiconductor device using, for example, an epoxy molding compound (EMC) wafer support system and a fabricating method thereof, which can, for example, adjust a thickness of the overall package in a final stage of completing the device while shortening a fabricating process and considerably reducing the fabrication cost. An example semiconductor device may comprise a first semiconductor die that comprises a bond pad and a through silicon via (TSV) connected to the bond pad; an interposer comprising a redistribution layer connected to the bond pad or the TSV and formed on the first semiconductor die, a second semiconductor die connected to the redistribution layer of the interposer and positioned on the interposer; an encapsulation unit encapsulating the second semiconductor die, and a solder ball connected to the bond pad or the TSV of the first semiconductor die.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 29, 2014
    Applicant: Amkor Technology, Inc.
    Inventors: Jin Young Kim, Doo Hyun Park, Ju Hoon Yoon, Seong Min Seo, Glenn Rinne, Choon Heung Lee
  • Publication number: 20140042600
    Abstract: A semiconductor package and manufacturing method thereof are disclosed and may include a first semiconductor device comprising a first bond pad on a first surface of the first semiconductor device, a first encapsulant material surrounding side edges of the first semiconductor device, and a redistribution layer (RDL) formed on the first surface of the first semiconductor device and on a first surface of the encapsulant material. The RDL may electrically couple the first bond pad to a second bond pad formed above the first surface of the encapsulant material. A second semiconductor device comprising a third bond pad on a first surface of the second semiconductor device may face the first surface of the first semiconductor device and be electrically coupled to the first bond pad on the first semiconductor device. The first surface of the first semiconductor device may be coplanar with the first surface of the encapsulant material.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 13, 2014
    Inventors: Jin Young Kim, No Sun Park, Yoon Joo Kim, Choon Heung Lee, Jin Han Kim, Seung Jae Lee, Se Woong Cha, Sung Kyu Kim, Glenn Rinne
  • Patent number: 8643177
    Abstract: A method of processing a wafer including a plurality of integrated circuit devices on a front side of the wafer, may include thinning the wafer from a back side opposite the front side. After thinning the wafer, a back side layer may be provided on the back side of the thinned wafer opposite the front side, and the back side layer may be configured to counter stress on the front side of the wafer including the plurality of integrated circuit devices thereon. After providing the back side layer, the plurality of integrated circuit devices may be separated. Related structures are also discussed.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: February 4, 2014
    Assignee: Amkor Technology, Inc.
    Inventors: Glenn A. Rinne, Kevin Engel, Julia Roe, Christopher John Berry
  • Patent number: 8487432
    Abstract: An electronic device may include a substrate, a seed layer on the substrate, a barrier layer on the seed layer opposite the substrate, and an oxidation barrier on the barrier layer opposite the seed layer. The barrier layer and the seed layer comprise different materials, and the oxidation barrier and the barrier layer may comprise different materials. The seed layer may be undercut relative to the barrier layer and/or relative to the oxidation barrier so that the barrier layer and/or the oxidation barrier define a lip extending beyond the seed layer in a direction parallel with respect to a surface of the substrate. Related methods are also discussed.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: July 16, 2013
    Assignee: Amkor Technology, Inc.
    Inventors: Glenn A. Rinne, J. Daniel Mis
  • Patent number: 8362612
    Abstract: A semiconductor device and a manufacturing method thereof are disclosed. A first insulation layer is formed on a semiconductor die, a redistribution layer electrically connected to a bond pad is formed on the first insulation layer, and a second insulation layer covers the redistribution layer. The second insulation layer is made of a cheap, non-photosensitive material. Accordingly, the manufacturing cost of the semiconductor device can be reduced.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: January 29, 2013
    Assignee: Amkor Technology, Inc.
    Inventors: Jong Sik Paek, Eun Sook Sohn, In Bae Park, Won Chul Do, Glenn A. Rinne
  • Patent number: 8294269
    Abstract: An electronic structure may include a conductive pad on a substrate, and an insulating layer on the substrate and on the conductive pad. The insulating layer may have a via therein so that a portion of the conductive pad opposite the substrate is free of the insulating layer. A conductive layer comprising copper may be on the portion of the conductive pad free of the insulating layer, on sidewalls of the via, and on surface portions of the insulating layer surrounding the via opposite the substrate and the conductive pad, and the conductive layer comprising copper may have a thickness of at least approximately 1.0 ?m. A conductive barrier layer may be on the conductive layer comprising copper, and the conductive barrier layer may include at least one of nickel, platinum, palladium, and/or combinations thereof.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: October 23, 2012
    Assignee: Unitive International
    Inventors: Krishna K. Nair, Glenn A. Rinne, William E. Batchelor
  • Patent number: 7994043
    Abstract: A method includes forming a patterned resist layer comprising a resist layer opening overlying a bond pad of a substrate. The resist layer opening is at least partially filled with a first solder component layer. A second solder component layer is formed on the first solder component layer. The patterned resist layer is removed. The first solder component layer and the second solder component layer are reflowed to form a lead free binary metal alloy solder bump electrically connected to the bond pad.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: August 9, 2011
    Assignee: Amkor Technology, Inc.
    Inventors: J. Daniel Mis, Glenn A. Rinne
  • Patent number: 7932615
    Abstract: An electronic device may include a substrate with an input/output pad thereon, and a compliant dielectric layer on a first portion of the substrate such that a second portion of the substrate is free of the compliant dielectric layer. A conductive redistribution line may extend from the input/output pad to the compliant dielectric layer so that the compliant dielectric layer is between a bump pad portion of the conductive redistribution line and the substrate. A first solder bump may be on the bump pad portion of the conductive redistribution line so that the compliant dielectric layer is between the first solder bump and the substrate. A second solder bump may be on the second portion of the substrate that is free of the compliant dielectric layer. Related methods are also discussed.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: April 26, 2011
    Assignee: Amkor Technology, Inc.
    Inventor: Glenn A. Rinne
  • Publication number: 20110084392
    Abstract: An electronic structure may include a conductive pad on a substrate, and an insulating layer on the substrate and on the conductive pad. The insulating layer may have a via therein so that a portion of the conductive pad opposite the substrate is free of the insulating layer. A conductive layer comprising copper may be on the portion of the conductive pad free of the insulating layer, on sidewalls of the via, and on surface portions of the insulating layer surrounding the via opposite the substrate and the conductive pad, and the conductive layer comprising copper may have a thickness of at least approximately 1.0 ?m. A conductive barrier layer may be on the conductive layer comprising copper, and the conductive barrier layer may include at least one of nickel, platinum, palladium, and/or combinations thereof.
    Type: Application
    Filed: December 8, 2010
    Publication date: April 14, 2011
    Inventors: Krishna K. Nair, Glenn A. Rinne, William E. Batchelor
  • Publication number: 20110079901
    Abstract: A method of processing a wafer including a plurality of integrated circuit devices on a front side of the wafer, may include thinning the wafer from a back side opposite the front side. After thinning the wafer, a back side layer may be provided on the back side of the thinned wafer opposite the front side, and the back side layer may be configured to counter stress on the front side of the wafer including the plurality of integrated circuit devices thereon. After providing the back side layer, the plurality of integrated circuit devices may be separated. Related structures are also discussed.
    Type: Application
    Filed: December 15, 2010
    Publication date: April 7, 2011
    Inventors: Glenn A. Rinne, Kevin Engel, Julia Roe, Chirstopher John Berry
  • Publication number: 20110037171
    Abstract: An electronic device may include a substrate, a seed layer on the substrate, a barrier layer on the seed layer opposite the substrate, and an oxidation barrier on the barrier layer opposite the seed layer. The barrier layer and the seed layer comprise different materials, and the oxidation barrier and the barrier layer may comprise different materials. The seed layer may be undercut relative to the barrier layer and/or relative to the oxidation barrier so that the barrier layer and/or the oxidation barrier define a lip extending beyond the seed layer in a direction parallel with respect to a surface of the substrate. Related methods are also discussed.
    Type: Application
    Filed: October 19, 2010
    Publication date: February 17, 2011
    Inventors: Glenn A. Rinne, J. Daniel Mis
  • Patent number: 7879715
    Abstract: Methods of forming an electronic structure may include forming a seed layer on an electronic substrate, and forming a conductive shunt layer on portions of the seed layer wherein portions of the seed layer are free of the conductive shunt layer. A conductive barrier layer may be formed on the conductive shunt layer opposite the seed layer wherein the conductive shunt layer comprises a first material and wherein the barrier layer comprises a second material different than the first material. Moreover, a solder layer may be formed on the barrier layer opposite the conductive shunt layer wherein the solder layer comprises a third material different than the first and second materials. Related structures are also discussed.
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: February 1, 2011
    Assignee: Unitive International Limited
    Inventors: Krishna K. Nair, Glenn A. Rinne, William E. Batchelor
  • Patent number: 7871899
    Abstract: A method of processing a wafer including a plurality of integrated circuit devices on a front side of the wafer, may include thinning the wafer from a back side opposite the front side. After thinning the wafer, a back side layer may be provided on the back side of the thinned wafer opposite the front side, and the back side layer may be configured to counter stress on the front side of the wafer including the plurality of integrated circuit devices thereon. After providing the back side layer, the plurality of integrated circuit devices may be separated. Related structures are also discussed.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: January 18, 2011
    Assignee: Amkor Technology, Inc.
    Inventors: Glenn A. Rinne, Kevin Engel, Julia Roe, Chirstopher John Berry
  • Patent number: 7839000
    Abstract: An electronic device may include an electronic substrate, and an under bump seed metallurgy layer on the electronic substrate. A barrier layer may be provided on the under bump seed metallurgy layer so that the under bump seed metallurgy layer is between the barrier layer and the electronic substrate, and the barrier layer may include nickel and/or copper. Moreover, portions of the under bump seed metallurgy layer may be undercut relative to portions of the barrier layer. In addition, a solder layer may be provided on the barrier layer so that the barrier layer is between the solder layer and the under bump seed metallurgy layer.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: November 23, 2010
    Assignee: Unitive International Limited
    Inventors: J. Daniel Mis, Gretchen Adema, Susan Bumgarner, Pooja Chilukuri, Christine Rinne, Glenn Rinne