Patents by Inventor Gordon A. Haller

Gordon A. Haller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200083059
    Abstract: A method used in forming an array of elevationally-extending strings of memory cells comprises forming a stack comprising vertically-alternating insulative tiers and wordline tiers. The stack comprises an etch-stop tier between a first tier and a second tier of the stack. The etch-stop tier is of different composition from those of the insulative tiers and the wordline tiers. Etching is conducted into the insulative tiers and the wordline tiers that are above the etch-stop tier to the etch-stop tier to form channel openings that have individual bases comprising the etch-stop tier. The etch-stop tier is penetrated through to extend individual of the channel openings there-through. After extending the individual channel openings through the etch-stop tier, etching is conducted into and through the insulative tiers and the wordline tiers that are below the etch-stop tier to extend the individual channel openings deeper into the stack below the etch-stop tier.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 12, 2020
    Applicant: Micron Technology, Inc.
    Inventors: John D. Hopkins, Gordon A. Haller, Tom J. John, Anish A. Khandekar, Christopher Larsen, Kunal Shrotri
  • Patent number: 10580792
    Abstract: Some embodiments include an integrated structure having a first opening extending through a stack of alternating insulative levels and conductive levels. A nitride structure is within the first opening and narrows the first opening to form a second opening. Detectable oxide is between the nitride structure and one or more of the conductive levels. Some embodiments include an integrated structure having a conductive material, a select device gate material over the conductive material, and vertically-stacked conductive levels over the select device gate material. A first opening extends through the vertically-stacked levels to the conductive material and has opposing sidewalls along a cross-section. Nitride liners are along the sidewalls of the first opening. Detectable oxide is between at least one of the nitride liners and one or more of the vertically-stacked conductive levels. Some embodiments include methods for forming integrated structures.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: March 3, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Jie Li, James Mathew, Kunal Shrotri, Luan C. Tran, Gordon A. Haller, Yangda Zhang, Hongpeng Yu, Minsoo Lee
  • Publication number: 20200051235
    Abstract: A method of predicting virtual metrology data for a wafer lot that includes receiving first image data from an imager system, the first image data relating to at least one first wafer lot, receiving measured metrology data from metrology equipment relating to the at least one first wafer lot, applying one or more machine learning techniques to the first image data and the measured metrology data to generate at least one predictive model for predicting at least one of virtual metrology data or virtual cell metrics data of wafer lots, and utilizing the at least one generated predictive model to generate at least one of first virtual metrology data or first virtual cell metrics data for the first wafer lot.
    Type: Application
    Filed: August 10, 2018
    Publication date: February 13, 2020
    Inventors: Amitava Majumdar, Qianlan Liu, Pradeep Ramachandran, Shawn D. Lyonsmith, Steve K. McCandless, Ted L. Taylor, Ahmed N. Noemaun, Gordon A. Haller
  • Patent number: 10553611
    Abstract: Some embodiments include a memory array which has a stack of alternating first and second levels. Channel material pillars extend through the stack, and vertically-stacked memory cell strings are along the channel material pillars. A common source is under the stack and electrically coupled to the channel material pillars. The common source has conductive protective material over and directly against metal silicide, with the conductive protective material being a composition other than metal silicide. Some embodiments include methods of fabricating integrated structures.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: February 4, 2020
    Assignee: Micron Technology, Inc.
    Inventors: John M. Meldrim, Yushi Hu, Rita J. Klein, John D. Hopkins, Hongbin Zhu, Gordon A. Haller, Luan C. Tran
  • Patent number: 10504859
    Abstract: Guard ring technology is disclosed. In one example, an electronic component guard ring can include a barrier having a first barrier portion and a second barrier portion oriented end to end to block ion diffusion and crack propagation in an electronic component. The guard ring can also include an opening in the barrier between the first and second barrier portions extending between a first side and a second side of the barrier. Associated systems and methods are also disclosed.
    Type: Grant
    Filed: October 1, 2016
    Date of Patent: December 10, 2019
    Assignee: Intel Corporation
    Inventors: Hongbin Zhu, Minsoo Lee, Gordon A. Haller, Philip J. Ireland
  • Patent number: 10453829
    Abstract: In one embodiment, an apparatus comprises a tier comprising alternating first and second layers, wherein the first layers comprise a first conductive material and the second layers comprise a first dielectric material; a lower metal layer below the tier; a bond pad above the tier, the bond pad coupled to the lower metal layer by a via extending through the tier; and a first channel formed through a portion of the tier, the first channel surrounding the via, the first channel comprising a second dielectric material.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: October 22, 2019
    Assignee: Intel Corporation
    Inventors: Merri Lyn Carlson, Hongbin Zhu, Gordon A. Haller, James E. Davis, Kevin G. Duesman, James Mathew, Michael P. Violette
  • Patent number: 10446507
    Abstract: A semiconductor device includes a semiconductor die comprising integrated circuitry over a substrate of a semiconductor material. A first die ring comprises one or more electrically conductive materials at least partially surrounding the integrated circuitry, the one or more electrically conductive materials comprising an electrically conductive path from proximate a surface of the substrate to an exposed surface of the semiconductor die. A second die ring comprises an electrically conductive material and is disposed around the first die ring. A first electrically conductive interconnect electrically connects the first die ring and to second die ring. Related semiconductor devices and semiconductor dice are disclosed.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: October 15, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Hongbin Zhu, Qinglin Zeng, Daniel Osterberg, Merri L. Carlson, Gordon A. Haller, Jeremy Adams
  • Patent number: 10438968
    Abstract: Some embodiments include a memory array which has a stack of alternating first and second levels. Channel material pillars extend through the stack, and vertically-stacked memory cell strings are along the channel material pillars. A common source is under the stack and electrically coupled to the channel material pillars. The common source has conductive protective material over and directly against metal silicide, with the conductive protective material being a composition other than metal silicide. Some embodiments include methods of fabricating integrated structures.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: October 8, 2019
    Assignee: Micron Technology, Inc.
    Inventors: John M. Meldrin, Yushi Hu, Rita J. Klein, John D. Hopkins, Hongbin Zhu, Gordon A. Haller, Luan C. Tran
  • Publication number: 20190294330
    Abstract: Solid state memory technology is disclosed. In one example, a solid state memory component can include a plurality of bit lines, a source line, and a plurality of non-functional memory pillars. Each non-functional memory pillar is electrically isolated from one or both of the plurality of bit lines and the source line. In another example, a solid state memory component can include a plurality of pillars located in a periphery portion of the solid state memory component, and memory cells adjacent to each of the pillars. Associated systems and methods are also disclosed.
    Type: Application
    Filed: June 11, 2019
    Publication date: September 26, 2019
    Applicant: Intel Corporation
    Inventors: Jun Zhao, Gowrisankar Damarla, David A. Daycock, Gordon A. Haller, Sri Sai Sivakumar Vegunta, John B. Matovu, Matthew R. Park, Prakash Rau Mokhna Rau
  • Publication number: 20190280007
    Abstract: Some embodiments include a memory array which has a stack of alternating first and second levels. Channel material pillars extend through the stack, and vertically-stacked memory cell strings are along the channel material pillars. A common source is under the stack and electrically coupled to the channel material pillars. The common source has conductive protective material over and directly against metal silicide, with the conductive protective material being a composition other than metal silicide. Some embodiments include methods of fabricating integrated structures.
    Type: Application
    Filed: May 15, 2019
    Publication date: September 12, 2019
    Inventors: John M. Meldrim, Yushi Hu, Rita J. Klein, John D. Hopkins, Hongbin Zhu, Gordon A. Haller, Luan C. Tran
  • Publication number: 20190229126
    Abstract: Some embodiments include a method of forming vertically-stacked memory cells. An opening is formed through a stack of alternating insulative and conductive levels. Cavities are formed to extend into the conductive levels along sidewalls of the opening. At least one of the cavities is formed to be shallower than one or more others of the cavities. Charge-blocking dielectric and charge-storage structures are formed within the cavities. Some embodiments include an integrated structure having a stack of alternating insulative and conductive levels. Cavities extend into the conductive levels. At least one of the cavities is shallower than one or more others of the cavities by at least about 2 nanometers. Charge-blocking dielectric is within the cavities. Charge-storage structures are within the cavities.
    Type: Application
    Filed: April 1, 2019
    Publication date: July 25, 2019
    Applicant: Micron Technology, Inc.
    Inventors: Hongbin Zhu, Gordon A. Haller, Charles H. Dennison, Anish A. Khandekar, Brett D. Lowe, Lining He, Brian Cleereman
  • Patent number: 10318170
    Abstract: Solid state memory technology is disclosed. A solid state memory component can include a plurality of bit lines, a source line, and a plurality of non-functional memory pillars. Each non-functional memory pillar is electrically isolated from one or both of the plurality of bit lines and the source line. A solid state memory component can include a plurality of pillars located in a periphery portion of the solid state memory component, and memory cells adjacent to each of the pillars. Associated systems and methods are also disclosed.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: June 11, 2019
    Assignee: Intel Corporation
    Inventors: Jun Zhao, Gowrisankar Damarla, David A. Daycock, Gordon A. Haller, Sri Sai Sivakumar Vegunta, John B. Matovu, Matthew R. Park, Prakash Rau Mokhna Rau
  • Patent number: 10269819
    Abstract: Some embodiments include a method of forming vertically-stacked memory cells. An opening is formed through a stack of alternating insulative and conductive levels. Cavities are formed to extend into the conductive levels along sidewalls of the opening. At least one of the cavities is formed to be shallower than one or more others of the cavities. Charge-blocking dielectric and charge-storage structures are formed within the cavities. Some embodiments include an integrated structure having a stack of alternating insulative and conductive levels. Cavities extend into the conductive levels. At least one of the cavities is shallower than one or more others of the cavities by at least about 2 nanometers. Charge-blocking dielectric is within the cavities. Charge-storage structures are within the cavities.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: April 23, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Hongbin Zhu, Gordon A. Haller, Charles H. Dennison, Anish A. Khandekar, Brett D. Lowe, Lining He, Brian Cleereman
  • Patent number: 10242995
    Abstract: Some embodiments include a string of charge storage devices formed along a vertical channel of semiconductor material; a gate region of a drain select gate (SGD) transistor, the gate region at least partially surrounding the vertical channel; a dielectric barrier formed in the gate region; a first isolation layer formed above the gate region and the dielectric barrier; a drain region of the SGD transistor formed above the vertical channel; and a second isolation layer formed above the first isolation layer and the drain region, wherein the second isolation layer includes a conductive contact in electrical contact with the drain region of the SGD transistor. Additional apparatus and methods are disclosed.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: March 26, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Hongbin Zhu, Lijing Gou, Gordon Haller, Luan C. Tran
  • Publication number: 20190067216
    Abstract: A semiconductor device includes a semiconductor die comprising integrated circuitry over a substrate of a semiconductor material. A first die ring comprises one or more electrically conductive materials at least partially surrounding the integrated circuitry, the one or more electrically conductive materials comprising an electrically conductive path from proximate a surface of the substrate to an exposed surface of the semiconductor die. A second die ring comprises an electrically conductive material and is disposed around the first die ring. A first electrically conductive interconnect electrically connects the first die ring and to second die ring. Related semiconductor devices and semiconductor dice are disclosed.
    Type: Application
    Filed: August 30, 2017
    Publication date: February 28, 2019
    Inventors: Hongbin Zhu, Qinglin Zeng, Daniel Osterberg, Merri L. Carlson, Gordon A. Haller, Jeremy Adams
  • Publication number: 20190043884
    Abstract: A method of forming a vertical string of memory cells comprises forming a lower stack comprising first alternating tiers comprising vertically-alternating control gate material and insulating material. An upper stack is formed over the lower stack, and comprises second alternating tiers comprising vertically-alternating control gate material and insulating material having an upper opening extending elevationally through multiple of the second alternating tiers. The lower stack comprises a lower opening extending elevationally through multiple of the first alternating tiers and that is occluded by occluding material. At least a portion of the upper opening is elevationally over the occluded lower opening. The occluding material that occludes the lower opening is removed to form an interconnected opening comprising the unoccluded lower opening and the upper opening.
    Type: Application
    Filed: August 21, 2018
    Publication date: February 7, 2019
    Applicant: Micron Technology, Inc.
    Inventors: Hongbin Zhu, Charles H. Dennison, Gordon A. Haller, Merri L Carlson, John D. Hopkins, Jia Hui Ng, Jie Sun
  • Publication number: 20180366453
    Abstract: In one embodiment, an apparatus comprises a tier comprising alternating first and second layers, wherein the first layers comprise a first conductive material and the second layers comprise a first dielectric material; a lower metal layer below the tier; a bond pad above the tier, the bond pad coupled to the lower metal layer by a via extending through the tier; and a first channel formed through a portion of the tier, the first channel surrounding the via, the first channel comprising a second dielectric material.
    Type: Application
    Filed: June 16, 2017
    Publication date: December 20, 2018
    Applicant: Intel Corporation
    Inventors: Merri Lyn Carlson, Hongbin Zhu, Gordon A. Haller, James E. Davis, Kevin G. Duesman, James Mathew, Michael P. Violette
  • Publication number: 20180358378
    Abstract: Some embodiments include an integrated structure having a first opening extending through a stack of alternating insulative levels and conductive levels. A nitride structure is within the first opening and narrows the first opening to form a second opening. Detectable oxide is between the nitride structure and one or more of the conductive levels. Some embodiments include an integrated structure having a conductive material, a select device gate material over the conductive material, and vertically-stacked conductive levels over the select device gate material. A first opening extends through the vertically-stacked levels to the conductive material and has opposing sidewalls along a cross-section. Nitride liners are along the sidewalls of the first opening. Detectable oxide is between at least one of the nitride liners and one or more of the vertically-stacked conductive levels. Some embodiments include methods for forming integrated structures.
    Type: Application
    Filed: August 21, 2018
    Publication date: December 13, 2018
    Applicant: Micron Technology, Inc.
    Inventors: Jie Li, James Mathew, Kunal Shrotri, Luan C. Tran, Gordon A. Haller, Yangda Zhang, Hongpeng Yu, Minsoo Lee
  • Patent number: 10134758
    Abstract: 3D NAND memory devices and systems having reduced bit line to drain select gate shorting, including associated methods, are provided and described.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: November 20, 2018
    Assignee: Intel Corporation
    Inventors: Hongbin Zhu, Jun Zhao, Purnima Narayanan, Gordon Haller, Damir Fazil
  • Publication number: 20180315766
    Abstract: Some embodiments include a semiconductor device having a stack structure including a source comprising polysilicon, an etch stop of oxide on the source, a select gate source on the etch stop, a charge storage structure over the select gate source, and a select gate drain over the charge storage structure. The semiconductor device may further include an opening extending vertically into the stack structure to a level adjacent to the source. A channel comprising polysilicon may be formed on a side surface and a bottom surface of the opening. The channel may contact the source at a lower portion of the opening, and may be laterally separated from the charge storage structure by a tunnel oxide. A width of the channel adjacent to the select gate source is greater than a width of the channel adjacent to the select gate drain.
    Type: Application
    Filed: July 5, 2018
    Publication date: November 1, 2018
    Inventors: Hongbin Zhu, Zhenyu Lu, Gordon Haller, Jie Sun, Randy J. Koval, John Hopkins