Patents by Inventor Gordon A. Haller

Gordon A. Haller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210265171
    Abstract: A method used in forming an array of elevationally-extending strings of memory cells comprises forming a stack comprising vertically-alternating insulative tiers and wordline tiers. The stack comprises an etch-stop tier between a first tier and a second tier of the stack. The etch-stop tier is of different composition from those of the insulative tiers and the wordline tiers. Etching is conducted into the insulative tiers and the wordline tiers that are above the etch-stop tier to the etch-stop tier to form channel openings that have individual bases comprising the etch-stop tier. The etch-stop tier is penetrated through to extend individual of the channel openings there-through. After extending the individual channel openings through the etch-stop tier, etching is conducted into and through the insulative tiers and the wordline tiers that are below the etch-stop tier to extend the individual channel openings deeper into the stack below the etch-stop tier.
    Type: Application
    Filed: May 12, 2021
    Publication date: August 26, 2021
    Applicant: Micron Technology, Inc.
    Inventors: John D. Hopkins, Gordon A. Haller, Tom J. John, Anish A. Khandekar, Christopher Larsen, Kunal Shrotri
  • Patent number: 11088168
    Abstract: Some embodiments include a semiconductor device having a stack structure including a source comprising polysilicon, an etch stop of oxide on the source, a select gate source on the etch stop, a charge storage structure over the select gate source, and a select gate drain over the charge storage structure. The semiconductor device may further include an opening extending vertically into the stack structure to a level adjacent to the source. A channel comprising polysilicon may be formed on a side surface and a bottom surface of the opening. The channel may contact the source at a lower portion of the opening, and may be laterally separated from the charge storage structure by a tunnel oxide. A width of the channel adjacent to the select gate source is greater than a width of the channel adjacent to the select gate drain.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: August 10, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Hongbin Zhu, Zhenyu Lu, Gordon Haller, Jie Sun, Randy J. Koval, John Hopkins
  • Patent number: 11088165
    Abstract: Some embodiments include a method in which a first stack is formed to include a metal-containing first layer, a second layer over the first layer, and a metal-containing third layer over the second layer. A first opening is formed to extend through the second and third layers. A sacrificial material is formed within the first opening. A second stack is formed over the first stack. A second opening is formed through the second stack, and is extended through the sacrificial material. First semiconductor material is formed within the second opening. A third opening is formed through the second stack and to the second layer. The second layer is removed to form a conduit. Conductively-doped second semiconductor material is formed within the conduit. Dopant is out-diffused from the conductively-doped second semiconductor material into the first semiconductor material. Some embodiments include integrated assemblies.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: August 10, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Gordon A. Haller, William R. Kueber, Zachary D. Beaman, Christopher G. Shea, Taehyun Kim
  • Patent number: 11075215
    Abstract: A method used in forming a memory array comprises forming a substrate comprising a conductive tier, a first insulator tier above the conductive tier, a sacrificial material tier above the first insulator tier, and a second insulator tier above the sacrificial material tier. A stack comprising vertically-alternating insulative tiers and wordline tiers is formed above the second insulator tier. Channel material is formed through the insulative tiers and the wordline tier. Horizontally-elongated trenches are formed through the stack to the sacrificial material tier. Sacrificial material is etched through the horizontally-elongated trenches selectively relative to material of the first insulator tier and selectively relative to material of the second insulator tier. A laterally-outer sidewall of the channel material is exposed in the sacrificial material tier. A conductive structure is formed directly against the laterally-outer sidewall of the channel material in the sacrificial material tier.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: July 27, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Collin Howder, Gordon A. Haller
  • Publication number: 20210193675
    Abstract: Some embodiments include an integrated structure having a stack of memory cell levels. A pair of channel-material-pillars extend through the stack. A source structure is under the stack. The source structure includes a portion having an upper region, a lower region, and an intermediate region between the upper and lower regions. The upper and lower regions have a same composition and join to one another at edge locations. The intermediate region has a different composition than the upper and lower regions. The edge locations are directly against the channel material of the channel-material-pillars. Some embodiments include methods of forming an integrated assembly.
    Type: Application
    Filed: December 20, 2019
    Publication date: June 24, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Collin Howder, Gordon A. Haller
  • Patent number: 11037797
    Abstract: A method used in forming an array of elevationally-extending strings of memory cells comprises forming a stack comprising vertically-alternating insulative tiers and wordline tiers. The stack comprises an etch-stop tier between a first tier and a second tier of the stack. The etch-stop tier is of different composition from those of the insulative tiers and the wordline tiers. Etching is conducted into the insulative tiers and the wordline tiers that are above the etch-stop tier to the etch-stop tier to form channel openings that have individual bases comprising the etch-stop tier. The etch-stop tier is penetrated through to extend individual of the channel openings there-through. After extending the individual channel openings through the etch-stop tier, etching is conducted into and through the insulative tiers and the wordline tiers that are below the etch-stop tier to extend the individual channel openings deeper into the stack below the etch-stop tier.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: June 15, 2021
    Assignee: Micron Technology, Inc.
    Inventors: John D. Hopkins, Gordon A. Haller, Tom J. John, Anish A. Khandekar, Christopher Larsen, Kunal Shrotri
  • Publication number: 20210175248
    Abstract: Some embodiments include a method in which a first stack is formed to include a metal-containing first layer, a second layer over the first layer, and a metal-containing third layer over the second layer. A first opening is formed to extend through the second and third layers. A sacrificial material is formed within the first opening. A second stack is formed over the first stack. A second opening is formed through the second stack, and is extended through the sacrificial material. First semiconductor material is formed within the second opening. A third opening is formed through the second stack and to the second layer. The second layer is removed to form a conduit. Conductively-doped second semiconductor material is formed within the conduit. Dopant is out-diffused from the conductively-doped second semiconductor material into the first semiconductor material. Some embodiments include integrated assemblies.
    Type: Application
    Filed: December 6, 2019
    Publication date: June 10, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Gordon A. Haller, William R. Kueber, Zachary D. Beaman, Christopher G. Shea, Taehyun Kim
  • Patent number: 11018097
    Abstract: Guard ring technology is disclosed. In one example, an electronic component guard ring can include a barrier having a first barrier portion and a second barrier portion oriented end to end to block ion diffusion and crack propagation in an electronic component. The guard ring can also include an opening in the barrier between the first and second barrier portions extending between a first side and a second side of the barrier. Associated systems and methods are also disclosed.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: May 25, 2021
    Assignee: Intel Corporation
    Inventors: Hongbin Zhu, Minsoo Lee, Gordon A. Haller, Philip J. Ireland
  • Patent number: 11018155
    Abstract: A method of forming a vertical string of memory cells comprises forming a lower stack comprising first alternating tiers comprising vertically-alternating control gate material and insulating material. An upper stack is formed over the lower stack, and comprises second alternating tiers comprising vertically-alternating control gate material and insulating material having an upper opening extending elevationally through multiple of the second alternating tiers. The lower stack comprises a lower opening extending elevationally through multiple of the first alternating tiers and that is occluded by occluding material. At least a portion of the upper opening is elevationally over the occluded lower opening. The occluding material that occludes the lower opening is removed to form an interconnected opening comprising the unoccluded lower opening and the upper opening.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: May 25, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Hongbin Zhu, Charles H. Dennison, Gordon A. Haller, Merri L. Carlson, John D. Hopkins, Jia Hui Ng, Jie Sun
  • Publication number: 20210151574
    Abstract: Some embodiments include a method of forming an integrated assembly. A first stack is formed over a conductive structure. The first stack includes a second layer between first and third layers. The first and third layers are conductive. A first opening is formed through the first stack. A sacrificial material is formed within the first opening. A second stack is formed over the first stack. The second stack has alternating first and second levels. A second opening is formed through the second stack and through the sacrificial material. First semiconductor material is formed within the second opening. A third opening is formed through the second stack, through the third layer, and to the second layer. The second layer is removed, forming a conduit. Second semiconductor material is formed within the conduit. Dopant is out-diffused from the second semiconductor material into the first semiconductor material. Some embodiments include integrated assemblies.
    Type: Application
    Filed: January 28, 2021
    Publication date: May 20, 2021
    Applicant: Micron Technology, Inc.
    Inventor: Gordon A. Haller
  • Patent number: 11010058
    Abstract: A solid state memory component can include a plurality of bit lines, a source line, and a plurality of non-functional memory pillars. Each non-functional memory pillar is electrically isolated from one or both of the plurality of bit lines and the source line. A solid state memory component can include a plurality of pillars located in a periphery portion of the solid state memory component, and memory cells adjacent to each of the pillars. Associated systems and methods are also disclosed.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: May 18, 2021
    Assignee: Intel Corporation
    Inventors: Jun Zhao, Gowrisankar Damaria, David A. Daycock, Gordon A. Haller, Sri Sai Sivakumar Vegunta, John B. Matovu, Matthew R. Park, Prakash Rau Mokhna Rau
  • Patent number: 10985252
    Abstract: Some embodiments include a method of forming an integrated assembly. A first stack is formed over a conductive structure. The first stack includes a second layer between first and third layers. The first and third layers are conductive. A first opening is formed through the first stack. A sacrificial material is formed within the first opening. A second stack is formed over the first stack. The second stack has alternating first and second levels. A second opening is formed through the second stack and through the sacrificial material. First semiconductor material is formed within the second opening. A third opening is formed through the second stack, through the third layer, and to the second layer. The second layer is removed, forming a conduit. Second semiconductor material is formed within the conduit. Dopant is out-diffused from the second semiconductor material into the first semiconductor material. Some embodiments include integrated assemblies.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: April 20, 2021
    Assignee: Micron Technology, Inc.
    Inventor: Gordon A. Haller
  • Publication number: 20210090246
    Abstract: A method of predicting virtual metrology data for a wafer lot that includes receiving first image data from an imager system, the first image data relating to at least one first wafer lot, receiving measured metrology data from metrology equipment relating to the at least one first wafer lot, applying one or more machine learning techniques to the first image data and the measured metrology data to generate at least one predictive model for predicting at least one of virtual metrology data or virtual cell metrics data of wafer lots, and utilizing the at least one generated predictive model to generate at least one of first virtual metrology data or first virtual cell metrics data for the first wafer lot.
    Type: Application
    Filed: December 10, 2020
    Publication date: March 25, 2021
    Inventors: Amitava Majumdar, Qianlan Liu, Pradeep Ramachandran, Shawn D. Lyonsmith, Steve K. McCandless, Ted L. Taylor, Ahmed N. Noemaun, Gordon A. Haller
  • Patent number: 10943920
    Abstract: Some embodiments include a memory array which has a stack of alternating first and second levels. Channel material pillars extend through the stack, and vertically-stacked memory cell strings are along the channel material pillars. A common source is under the stack and electrically coupled to the channel material pillars. The common source has conductive protective material over and directly against metal silicide, with the conductive protective material being a composition other than metal silicide. Some embodiments include methods of fabricating integrated structures.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: March 9, 2021
    Assignee: Micron Technology, Inc.
    Inventors: John M. Meldrim, Yushi Hu, Rita J. Klein, John D. Hopkins, Hongbin Zhu, Gordon A. Haller, Luan C. Tran
  • Publication number: 20210066460
    Abstract: Some embodiments include a method of forming an integrated assembly. A first stack is formed over a conductive structure. The first stack includes a second layer between first and third layers. The first and third layers are conductive. A first opening is formed through the first stack. A sacrificial material is formed within the first opening. A second stack is formed over the first stack. The second stack has alternating first and second levels. A second opening is formed through the second stack and through the sacrificial material. First semiconductor material is formed within the second opening. A third opening is formed through the second stack, through the third layer, and to the second layer. The second layer is removed, forming a conduit. Second semiconductor material is formed within the conduit. Dopant is out-diffused from the second semiconductor material into the first semiconductor material. Some embodiments include integrated assemblies.
    Type: Application
    Filed: August 26, 2019
    Publication date: March 4, 2021
    Applicant: Micron Technology, Inc.
    Inventor: Gordon A. Haller
  • Patent number: 10872403
    Abstract: A method of predicting virtual metrology data for a wafer lot that includes receiving first image data from an imager system, the first image data relating to at least one first wafer lot, receiving measured metrology data from metrology equipment relating to the at least one first wafer lot, applying one or more machine learning techniques to the first image data and the measured metrology data to generate at least one predictive model for predicting at least one of virtual metrology data or virtual cell metrics data of wafer lots, and utilizing the at least one generated predictive model to generate at least one of first virtual metrology data or first virtual cell metrics data for the first wafer lot.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: December 22, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Amitava Majumdar, Qianlan Liu, Pradeep Ramachandran, Shawn D. Lyonsmith, Steve K. McCandless, Ted L. Taylor, Ahmed N. Noemaun, Gordon A. Haller
  • Patent number: 10784273
    Abstract: A method used in forming a memory array comprises forming a substrate comprising a conductive tier, a first insulator tier above the conductive tier, a sacrificial material tier above the first insulator tier, and a second insulator tier above the sacrificial material tier. A stack comprising vertically-alternating insulative tiers and wordline tiers is formed above the second insulator tier. Channel material is formed through the insulative tiers and the wordline tier. Horizontally-elongated trenches are formed through the stack to the sacrificial material tier. Sacrificial material is etched through the horizontally-elongated trenches selectively relative to material of the first insulator tier and selectively relative to material of the second insulator tier. A laterally-outer sidewall of the channel material is exposed in the sacrificial material tier. A conductive structure is formed directly against the laterally-outer sidewall of the channel material in the sacrificial material tier.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: September 22, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Collin Howder, Gordon A. Haller
  • Publication number: 20200279867
    Abstract: In an example, a method of forming a stacked memory array includes forming a stack of alternating first and second dielectrics, forming a termination structure through the stack, the termination structure comprising a dielectric liner around a conductor, forming a set of contacts concurrently with forming the termination structure, forming a third dielectric over an upper surface of the stack and an upper surface of the termination structure, forming a first opening through the third dielectric and the stack between first and second groups of semiconductor structures so that the first opening exposes an upper surface of the conductor, and removing the conductor from the termination structure to form a second opening lined with the dielectric liner. In some examples, the dielectric liner can include a rectangular or a triangular tab or a pair of prongs that can have a rectangular profile or that can be tapered.
    Type: Application
    Filed: May 18, 2020
    Publication date: September 3, 2020
    Inventors: Matthew J. King, Anilkumar Chandolu, Indra V. Chary, Darwin A. Clampitt, Gordon Haller, Thomas George, Brett D. Lowe, David A. Daycock
  • Publication number: 20200266204
    Abstract: A method used in forming a memory array comprises forming a substrate comprising a conductive tier, a first insulator tier above the conductive tier, a sacrificial material tier above the first insulator tier, and a second insulator tier above the sacrificial material tier. A stack comprising vertically-alternating insulative tiers and wordline tiers is formed above the second insulator tier. Channel material is formed through the insulative tiers and the wordline tier. Horizontally-elongated trenches are formed through the stack to the sacrificial material tier. Sacrificial material is etched through the horizontally-elongated trenches selectively relative to material of the first insulator tier and selectively relative to material of the second insulator tier. A laterally-outer sidewall of the channel material is exposed in the sacrificial material tier. A conductive structure is formed directly against the laterally-outer sidewall of the channel material in the sacrificial material tier.
    Type: Application
    Filed: May 7, 2020
    Publication date: August 20, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Collin Howder, Gordon A. Haller
  • Publication number: 20200251347
    Abstract: A method used in forming an array of elevationally-extending strings of memory cells comprises forming a stack comprising vertically-alternating insulative tiers and wordline tiers. The stack comprises an etch-stop tier between a first tier and a second tier of the stack. The etch-stop tier is of different composition from those of the insulative tiers and the wordline tiers. Etching is conducted into the insulative tiers and the wordline tiers that are above the etch-stop tier to the etch-stop tier to form channel openings that have individual bases comprising the etch-stop tier. The etch-stop tier is penetrated through to extend individual of the channel openings there-through. After extending the individual channel openings through the etch-stop tier, etching is conducted into and through the insulative tiers and the wordline tiers that are below the etch-stop tier to extend the individual channel openings deeper into the stack below the etch-stop tier.
    Type: Application
    Filed: April 21, 2020
    Publication date: August 6, 2020
    Applicant: Micron Technology, Inc.
    Inventors: John D. Hopkins, Gordon A. Haller, Tom J. John, Anish A. Khandekar, Christopher Larsen, Kunal Shrotri