Patents by Inventor Gordon A. Haller

Gordon A. Haller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100273303
    Abstract: A memory array includes a plurality of memory cells formed on a semiconductor substrate. Individual of the memory cells include first and second field effect transistors respectively comprising a gate, a channel region, and a pair of source/drain regions. The gates of the first and second field effect transistors are hard wired together. A conductive data line is hard wired to two of the source/drain regions. A charge storage device is hard wired to at least one of the source/drain regions other than the two. Other aspects and implementations are contemplated, including methods of fabricating memory arrays.
    Type: Application
    Filed: July 1, 2010
    Publication date: October 28, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Gordon A. Haller, Sanh D. Tang
  • Publication number: 20100252886
    Abstract: There is provided fin structures and methods for fabricating fin structures. More specifically, fin structures are formed in a substrate. The fin structures may include two fins separated by a channel, wherein the fins may be employed as fins of a field effect transistor. The fin structures are formed below the upper surface of the substrate, and may be formed without utilizing a photolithographic mask to etch the fins.
    Type: Application
    Filed: June 7, 2010
    Publication date: October 7, 2010
    Applicant: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Gordon Haller
  • Patent number: 7808053
    Abstract: Embodiments of the present invention provide apparatus, methods and systems that include a substrate including a central region and a peripheral region; a plurality of layers above a surface of the substrate, a first plurality of pitch-multiplied spacers on a top surface of the plurality of layer, the first plurality of pitch-multiplied spacers being above the central region of the substrate, and a second plurality of pitch-multiplied spacers on the top surface of the plurality of layers, the second plurality of pitch-multiplied spacers above the peripheral region and including at least one pitch-multiplied spacer having a surface at a distance from the at least one pitch multiplied spacer having a surface at the boundary.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: October 5, 2010
    Assignee: Intel Corporation
    Inventors: Gordon Haller, Luan C. Tran
  • Patent number: 7772632
    Abstract: A memory array includes a plurality of memory cells formed on a semiconductor substrate. Individual of the memory cells include first and second field effect transistors respectively comprising a gate, a channel region, and a pair of source/drain regions. The gates of the first and second field effect transistors are hard wired together. A conductive data line is hard wired to two of the source/drain regions. A charge storage device is hard wired to at least one of the source/drain regions other than the two. Other aspects and implementations are contemplated, including methods of fabricating memory arrays.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: August 10, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Gordon A. Haller, Sanh D. Tang
  • Patent number: 7745319
    Abstract: There is provided a system and method for fabricating a fin field effect transistor. More specifically, in one embodiment, there is provided a method comprising depositing a layer of nitride on a substrate, applying a photolithographic mask on the layer of nitride to define a location of a wall, etching the layer of nitride to create the wall, removing the photolithographic mask, depositing a spacer layer adjacent to the wall, etching the spacer layer to create a spacer adjacent to the wall, wherein the spacer and the wall cover a first portion of the substrate, and etching a second portion of the substrate not covered by the spacer to create a trench.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: June 29, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Gordon Haller
  • Publication number: 20100148249
    Abstract: A memory device comprises an active area comprising a source and at least two drains defining a first axis. At least two substantially parallel word lines are defined by a first pitch, with one word line located between each drain and the source. Digit lines are defined by a second pitch, one of the digit lines being coupled to the source and forming a second axis. The active areas of the memory array are tilted at 45° to the grid defined by the word lines and digit lines. The word line pitch is about 1.5F, while the digit line pitch is about 3F.
    Type: Application
    Filed: February 22, 2010
    Publication date: June 17, 2010
    Applicant: Micron Technology, Inc.
    Inventors: Gordon A. Haller, David K. Hwang, Sanh Dang Tang, Ceredig Roberts
  • Publication number: 20100144107
    Abstract: A memory device comprising a vertical transistor includes a digit line that is directly coupled to the source regions of each memory cell. Because an electrical plug is not used to form a contact between the digit line and the source regions, a number of fabrication steps may be reduced and the possibility for manufacturing defects may also be reduced. In some embodiments, a memory device may include a vertical transistor having gate regions that are recessed from an upper portion of a silicon substrate. With the gate regions recessed from the silicon substrate, the gate regions are spaced further from the source/drain regions and, accordingly, cross capacitance between the gate regions and the source/drain regions may be reduced.
    Type: Application
    Filed: February 10, 2010
    Publication date: June 10, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Gordon Haller, Sanh Dang Tang, Steve Cummings
  • Patent number: 7696567
    Abstract: A memory device comprising a vertical transistor includes a digit line that is directly coupled to the source regions of each memory cell. Because an electrical plug is not used to form a contact between the digit line and the source regions, a number of fabrication steps may be reduced and the possibility for manufacturing defects may also be reduced. In some embodiments, a memory device may include a vertical transistor having gate regions that are recessed from an upper portion of a silicon substrate. With the gate regions recessed from the silicon substrate, the gate regions are spaced further from the source/drain regions and, accordingly, cross capacitance between the gate regions and the source/drain regions may be reduced.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: April 13, 2010
    Assignee: Micron Technology, Inc
    Inventors: Gordon Haller, Sanh Dang Tang, Steve Cummings
  • Patent number: 7687342
    Abstract: A memory device comprises an active area comprising a source and at least two drains defining a first axis. At least two substantially parallel word lines are defined by a first pitch, with one word line located between each drain and the source. Digit lines are defined by a second pitch, one of the digit lines being coupled to the source and forming a second axis. The active areas of the memory array are tilted at 45° to the grid defined by the word lines and digit lines. The word line pitch is about 1.5F, while the digit line pitch is about 3F.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: March 30, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Gordon A. Haller, David K. Hwang, Sanh Dang Tang, Ceredig Roberts
  • Patent number: 7687857
    Abstract: Integrated circuits and methods of forming field effect transistors are disclosed. In one aspect, an integrated circuit includes a semiconductor substrate comprising bulk semiconductive material. Electrically insulative material is received within the bulk semiconductive material. Semiconductor material is formed on the insulative material. A field effect transistor is included and comprises a gate, a channel region, and a pair of source/drain regions. In one implementation, one of the source/drain regions is formed in the semiconductor material, and the other of the source/drain regions is formed in the bulk semiconductive material. In one implementation, the electrically insulative material extends from beneath one of the source/drain regions to beneath only a portion of the channel region. Other aspects and implementations, including methodical aspects, are disclosed.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: March 30, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Gordon Haller
  • Patent number: 7659560
    Abstract: A transistor gate forming method includes forming a metal layer within a line opening and forming a fill layer within the opening over the metal layer. The fill layer is substantially selectively etchable with respect to the metal layer. A transistor structure includes a line opening, a dielectric layer within the opening, a metal layer over the dielectric layer within the opening, and a fill layer over the metal layer within the opening. The metal layer/fill layer combination exhibits less intrinsic less than would otherwise exist if the fill layer were replaced by an increased thickness of the metal layer. The inventions apply at least to 3-D transistor structures.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: February 9, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Gordon A. Haller, Prashant Raghu, Ravi Iyer
  • Publication number: 20090311845
    Abstract: One-transistor (1T) capacitor-less DRAM cells each include a MOS transistor having a bias gate layer that separates a floating body region from a base substrate. The MOS transistor functions as a storage device, eliminating the need of the storage capacitor. Logic “1” is written to and stored in the storage device by causing majority carriers (holes in an NMOS transistor) to accumulate and be held in the floating body region next to the bias gate layer, and is erased by removing the majority carriers from where they are held.
    Type: Application
    Filed: August 7, 2009
    Publication date: December 17, 2009
    Applicant: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Gordon Haller, Daniel H. Doyle
  • Patent number: 7626223
    Abstract: Methods of reducing the floating body effect in vertical transistors are disclosed. The floating body effect occurs when an active region in a pillar is cut off from the substrate by a depletion region and the accompanying electrostatic potential created. In a preferred embodiment, a word line is recessed into the substrate to tie the upper active region to the substrate. The resulting memory cells are preferably used in dynamic random access memory (DRAM) devices.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: December 1, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Gordon A. Haller
  • Patent number: 7605350
    Abstract: In general, the system provides for soft baking a semiconductor wafer so that photoresist layers on the wafer are free of surface voids or craters. In particular, the system provides for manufacturing a semiconductor wafer having no photoresist craters at the completion of a two-step post-apply resist bake (soft bake) in the fabrication of an integrated circuit. In the system, the semiconductor wafer is coated with resist and then baked at both a low-bake temperature and a high-bake temperature. It is theorized that the lower temperature bake either hardens the resist layer before trapped air expands through the resist or displaces the trapped air while the resist layer remains fluid and returns to its conformal shape.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: October 20, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Paul Shirley, Gordon Haller
  • Publication number: 20090239366
    Abstract: Methods and structures are provided for full silicidation of recessed silicon. Silicon is provided within a trench. A mixture of metals is provided over the silicon in which one of the metals diffuses more readily in silicon than silicon does in the metal, and another of the metals diffuses less readily in silicon than silicon does in the metal. An exemplary mixture includes 80% nickel and 20% cobalt. The silicon within the trench is allowed to fully silicide without void formation, despite a relatively high aspect ratio for the trench. Among other devices, recessed access devices (RADs) can be formed by the method for memory arrays.
    Type: Application
    Filed: June 2, 2009
    Publication date: September 24, 2009
    Inventors: Hasan Nejad, Thomas A. Figura, Gordon A. Haller, Ravi Iyer, John Mark Meldrim, Justin Harnish
  • Patent number: 7589369
    Abstract: The invention includes a method in which a semiconductor substrate is provided to have a memory array region, and a peripheral region outward of the memory array region. Paired transistors are formed within the memory array region, with such paired transistors sharing a source/drain region corresponding to a bitline contact location, and having other source/drain regions corresponding to capacitor contact locations. A peripheral transistor gate is formed over the peripheral region. Electrically insulative material is formed over the peripheral transistor gate, and also over the bitline contact location. The insulative material is patterned to form sidewall spacers along sidewalls of the peripheral transistor gate, and to form a protective block over the bitline contact location. Subsequently, capacitors are formed which extend over the protective block, and which electrically connect with the capacitor contact locations. The invention also includes semiconductor constructions.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: September 15, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Gordon A. Haller
  • Patent number: 7589995
    Abstract: One-transistor (1T) capacitor-less DRAM cells each include a MOS transistor having a bias gate layer that separates a floating body region from a base substrate. The MOS transistor functions as a storage device, eliminating the need of the storage capacitor. Logic “1” is written to and stored in the storage device by causing majority carriers (holes in an NMOS transistor) to accumulate and be held in the floating body region next to the bias gate layer, and is erased by removing the majority carriers from where they are held.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: September 15, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Gordon Haller, Daniel H. Doyle
  • Patent number: 7557032
    Abstract: Methods and structures are provided for full silicidation of recessed silicon. Silicon is provided within a trench. A mixture of metals is provided over the silicon in which one of the metals diffuses more readily in silicon than silicon does in the metal, and another of the metals diffuses less readily in silicon than silicon does in the metal. An exemplary mixture includes 80% nickel and 20% cobalt. The silicon within the trench is allowed to fully silicide without void formation, despite a relatively high aspect ratio for the trench. Among other devices, recessed access devices (RADs) can be formed by the method for memory arrays.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: July 7, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Hasan Nejad, Thomas A. Figura, Gordon A. Haller, Ravi Iyer, John Mark Meldrim, Justin Harnish
  • Patent number: 7547945
    Abstract: The invention includes a transistor device having a semiconductor substrate with an upper surface. A pair of source/drain regions are formed within the semiconductor substrate and a channel region is formed within the semiconductor substrate and extends generally perpendicularly relative to the upper surface of the semiconductor substrate. A gate is formed within the semiconductor substrate between the pair of the source/drain regions.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: June 16, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Gordon Haller, Kris K. Brown, Tuman Earl Allen, III
  • Patent number: 7521322
    Abstract: Vertical transistors for memory cells, such as 4F2 memory cells, are disclosed. The memory cells use digit line connections formed within the isolation trench to connect the digit line with the lower active area. Vertical transistor pillars can be formed from epitaxial silicon or etched from bulk silicon. Memory cells can be formed by creating a cell capacitor electrically connected to each transistor pillar.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: April 21, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Sanh Dang Tang, Gordon A. Haller