Patents by Inventor Gordon A. Haller

Gordon A. Haller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120088349
    Abstract: There is provided fin methods for fabricating fin structures. More specifically, fin structures are formed in a substrate. The fin structures may include two fins separated by a channel, wherein the fins may be employed as fins of a field effect transistor. The fin structures are formed below the upper surface of the substrate, and may be formed without utilizing a photolithographic mask to etch the fins.
    Type: Application
    Filed: December 13, 2011
    Publication date: April 12, 2012
    Applicant: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Gordon Haller
  • Patent number: 8120101
    Abstract: The invention includes a transistor device having a semiconductor substrate with an upper surface. A pair of source/drain regions are formed within the semiconductor substrate and a channel region is formed within the semiconductor substrate and extends generally perpendicularly relative to the upper surface of the semiconductor substrate. A gate is formed within the semiconductor substrate between the pair of the source/drain regions.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: February 21, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Gordon A. Haller, Kris K. Brown, Tuman Earl Allen, III
  • Patent number: 8076721
    Abstract: There is provided fin structures and methods for fabricating fin structures. More specifically, fin structures are formed in a substrate. The fin structures may include two fins separated by a channel, wherein the fins may be employed as fins of a field effect transistor. The fin structures are formed below the upper surface of the substrate, and may be formed without utilizing a photolithographic mask to etch the fins.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: December 13, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Sahn D. Tang, Gordon Haller
  • Publication number: 20110227071
    Abstract: Some embodiments include methods of forming isolation structures. A semiconductor base may be provided to have a crystalline semiconductor material projection between a pair of openings. SOD material (such as, for example, polysilazane) may be flowed within said openings to fill the openings. After the openings are filled with the SOD material, one or more dopant species may be implanted into the projection to amorphize the crystalline semiconductor material within an upper portion of said projection. The SOD material may then be annealed at a temperature of at least about 400° C. to form isolation structures. Some embodiments include semiconductor constructions that include a semiconductor material base having a projection between a pair of openings. The projection may have an upper region over a lower region, with the upper region being at least 75% amorphous, and with the lower region being entirely crystalline.
    Type: Application
    Filed: March 22, 2010
    Publication date: September 22, 2011
    Inventors: Vladimir Mikhalev, Jim Fulford, Yongjun Jeff Hu, Gordon A. Haller, Lequn Liu
  • Patent number: 7998813
    Abstract: Fabrication methods for gate transistors in integrated circuit devices enable the formation of recessed access device structures or FinFET structures having P-type workfunctions. The fabrication methods also provide for the formation of access transistor gates of an access device following formation of the periphery transistor gates. Access devices and systems including same are also disclosed.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: August 16, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Gordon A. Haller, Sanh D. Tang
  • Publication number: 20110183507
    Abstract: Methods are provided for simultaneously processing transistors in two different regions of an integrated circuit. Planar transistors are provided in a logic region while recessed access devices (RADs) are provided in an array region for a memory device. During gate stack patterning in the periphery, word lines are recessed within the trenches for the array RADs. Side wall spacer formation in the periphery simultaneously provides an insulating cap layer burying the word lines within the trenches of the array.
    Type: Application
    Filed: April 11, 2011
    Publication date: July 28, 2011
    Applicant: Micron Technology Inc.
    Inventors: Thomas A. Figura, Gordon A. Haller
  • Publication number: 20110169086
    Abstract: A method of forming a field effect transistor includes forming trench isolation material within a semiconductor substrate and on opposing sides of a semiconductor material channel region along a length of the channel region. The trench isolation material is formed to comprise opposing insulative projections extending toward one another partially under the channel region along the channel length and with semiconductor material being received over the projections. The trench isolation material is etched to expose opposing sides of the semiconductor material along the channel length. The exposed opposing sides of the semiconductor material are etched along the channel length to form a channel fin projecting upwardly relative to the projections. A gate is formed over a top and opposing sides of the fin along the channel length. Other methods and structures are disclosed.
    Type: Application
    Filed: March 23, 2011
    Publication date: July 14, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Paul Grisham, Gordon A. Haller, Sanh D. Tang
  • Publication number: 20110171802
    Abstract: One-transistor (1T) capacitor-less DRAM cells each include a MOS transistor having a bias gate layer that separates a floating body region from a base substrate. The MOS transistor functions as a storage device, eliminating the need of the storage capacitor. Logic “1” is written to and stored in the storage device by causing majority carriers (holes in an NMOS transistor) to accumulate and be held in the floating body region next to the bias gate layer, and is erased by removing the majority carriers from where they are held.
    Type: Application
    Filed: March 25, 2011
    Publication date: July 14, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Sanh D. Tang, Gordon Haller, Daniel H. Doyle
  • Patent number: 7977236
    Abstract: Methods and structures are provided for full silicidation of recessed silicon. Silicon is provided within a trench. A mixture of metals is provided over the silicon in which one of the metals diffuses more readily in silicon than silicon does in the metal, and another of the metals diffuses less readily in silicon than silicon does in the metal. An exemplary mixture includes 80% nickel and 20% cobalt. The silicon within the trench is allowed to fully silicide without void formation, despite a relatively high aspect ratio for the trench. Among other devices, recessed access devices (RADs) can be formed by the method for memory arrays.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: July 12, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Hasan Nejad, Thomas A. Figura, Gordon A. Haller, Ravi Iyer, John Mark Meldrim, Justin Harnish
  • Patent number: 7944743
    Abstract: One-transistor (1T) capacitor-less DRAM cells each include a MOS transistor having a bias gate layer that separates a floating body region from a base substrate. The MOS transistor functions as a storage device, eliminating the need of the storage capacitor. Logic “1” is written to and stored in the storage device by causing majority carriers (holes in an NMOS transistor) to accumulate and be held in the floating body region next to the bias gate layer, and is erased by removing the majority carriers from where they are held.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: May 17, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Gordon A. Haller, Daniel H. Doyle
  • Patent number: 7939403
    Abstract: A method of forming a field effect transistor includes forming trench isolation material within a semiconductor substrate and on opposing sides of a semiconductor material channel region along a length of the channel region. The trench isolation material is formed to comprise opposing insulative projections extending toward one another partially under the channel region along the channel length and with semiconductor material being received over the projections. The trench isolation material is etched to expose opposing sides of the semiconductor material along the channel length. The exposed opposing sides of the semiconductor material are etched along the channel length to form a channel fin projecting upwardly relative to the projections. A gate is formed over a top and opposing sides of the fin along the channel length. Other methods and structures are disclosed.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: May 10, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Paul Grisham, Gordon A. Haller, Sanh D. Tang
  • Patent number: 7939409
    Abstract: Methods are provided for simultaneously processing transistors in two different regions of an integrated circuit. Planar transistors are provided in a logic region while recessed access devices (RADs) are provided in an array region for a memory device. During gate stack patterning in the periphery, word lines are recessed within the trenches for the array RADs. Side wall spacer formation in the periphery simultaneously provides an insulating cap layer burying the word lines within the trenches of the array.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: May 10, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Thomas A. Figura, Gordon A. Haller
  • Patent number: 7935999
    Abstract: A memory device comprises an active area comprising a source and at least two drains defining a first axis. At least two substantially parallel word lines are defined by a first pitch, with one word line located between each drain and the source. Digit lines are defined by a second pitch, one of the digit lines being coupled to the source and forming a second axis. The active areas of the memory array are tilted at 45° to the grid defined by the word lines and digit lines. The word line pitch is about 1.5F, while the digit line pitch is about 3F.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: May 3, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Gordon A. Haller, David K. Hwang, Sanh Dang Tang, Ceredig Roberts
  • Publication number: 20110092062
    Abstract: A transistor gate forming method includes forming a metal layer within a line opening and forming a fill layer within the opening over the metal layer. The fill layer is substantially selectively etchable with respect to the metal layer. A transistor structure includes a line opening, a dielectric layer within the opening, a metal layer over the dielectric layer within the opening, and a fill layer over the metal layer within the opening. The metal layer/fill layer combination exhibits less intrinsic less than would otherwise exist if the fill layer were replaced by an increased thickness of the metal layer. The inventions apply at least to 3-D transistor structures.
    Type: Application
    Filed: December 23, 2010
    Publication date: April 21, 2011
    Applicant: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Gordon A. Haller, Prashant Raghu, Ravi Iyer
  • Publication number: 20110081755
    Abstract: Fabrication methods for gate transistors in integrated circuit devices enable the formation of recessed access device structures or FinFET structures having P-type workfunctions. The fabrication methods also provide for the formation of access transistor gates of an access device following formation of the periphery transistor gates. Access devices and systems including same are also disclosed.
    Type: Application
    Filed: December 6, 2010
    Publication date: April 7, 2011
    Applicant: Micron Technology, Inc.
    Inventors: Gordon A. Haller, Sanh D. Tang
  • Publication number: 20110012182
    Abstract: The invention includes a transistor device having a semiconductor substrate with an upper surface. A pair of source/drain regions are formed within the semiconductor substrate and a channel region is formed within the semiconductor substrate and extends generally perpendicularly relative to the upper surface of the semiconductor substrate. A gate is formed within the semiconductor substrate between the pair of the source/drain regions.
    Type: Application
    Filed: September 27, 2010
    Publication date: January 20, 2011
    Applicant: Micron Technology Inc.
    Inventors: Sanh D. TANG, Gordon HALLER, Kris K. BROWN, Tuman Earl ALLEN, III
  • Patent number: 7867845
    Abstract: A transistor gate forming method includes forming a metal layer within a line opening and forming a fill layer within the opening over the metal layer. The fill layer is substantially selectively etchable with respect to the metal layer. A transistor structure includes a line opening, a dielectric layer within the opening, a metal layer over the dielectric layer within the opening, and a fill layer over the metal layer within the opening. The metal layer/fill layer combination exhibits less intrinsic less than would otherwise exist if the fill layer were replaced by an increased thickness of the metal layer. The inventions apply at least to 3-D transistor structures.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: January 11, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Gordon A. Haller, Prashant Raghu, Ravi Iyer
  • Patent number: 7858471
    Abstract: Fabrication methods for gate transistors in integrated circuit devices enable the formation of recessed access device structures or FinFET structures having P-type workfunctions. The fabrication methods also provide for the formation of access transistor gates of an access device following formation of the periphery transistor gates. Access devices and systems including same are also disclosed.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: December 28, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Gordon A. Haller, Sanh D. Tang
  • Patent number: 7846851
    Abstract: A semiconductor wafer having no photoresist craters at the completion of a two-step post-apply resist bake (soft bake) in the fabrication of an integrated circuit. A process and method for soft baking the semiconductor wafer so that photoresist layers are free of surface voids or craters. The semiconductor wafer is coated with resist and then baked at both a low-bake temperature and a high-bake temperature. It is theorized that the lower temperature bake either hardens the resist layer before trapped air expands through the resist or displaces the trapped air while the resist layer remains fluid and returns to its conformal shape.
    Type: Grant
    Filed: January 27, 2004
    Date of Patent: December 7, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Paul Shirley, Gordon Haller
  • Patent number: 7825462
    Abstract: The invention includes a transistor device having a semiconductor substrate with an upper surface. A pair of source/drain regions are formed within the semiconductor substrate and a channel region is formed within the semiconductor substrate and extends generally perpendicularly relative to the upper surface of the semiconductor substrate. A gate is formed within the semiconductor substrate between the pair of the source/drain regions.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: November 2, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Gordon Haller, Kris K. Brown, Tuman Earl Allen, III