Patents by Inventor Gregory J. Wilson
Gregory J. Wilson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12087571Abstract: Methods, systems, and apparatus for cleaning and drying a tape-frame substrate are provided. In embodiments, an apparatus for supporting a tape-frame substrate includes a chuck having a first side and a second side opposite the first side, the first side having a convex surface configured to support the tape-frame substrate; and a plurality of channels extending through the chuck and having outlets along the first side, wherein the plurality of channels are configured to dispense fluid from the outlets along the convex surface of the first side. In embodiments, a support system includes the chuck and a holder configured to mount a tape-frame substrate to the chuck. The plurality of channels are configured to dispense fluid from the outlets and between the tape-frame substrate and the convex surface of the chuck when the tape-frame substrate is mounted to the chuck.Type: GrantFiled: October 25, 2023Date of Patent: September 10, 2024Assignee: APPLIED MATERIALS, INC.Inventors: Ying Wang, Guan Huei See, Gregory J. Wilson
-
Patent number: 11984358Abstract: Exemplary methods of producing a semiconductor substrate may include plating a metal within a plurality of vias on the semiconductor substrate. A target average fill thickness of the metal within the plurality of vias may be between about a thickness equal to an average via radius of the plurality of vias and a thickness twice the average via radius of the plurality of vias. At least one via of the plurality of vias may be filled to a height below the target average fill thickness of the metal. The methods may include heating the metal to cause reflow of the metal within each via of the plurality of vias. The reflow may adjust the metal within the at least one via to increase in height towards the target average fill thickness.Type: GrantFiled: May 12, 2022Date of Patent: May 14, 2024Assignee: Applied Materials, Inc.Inventors: Paul McHugh, Kwan Wook Roh, Gregory J. Wilson
-
Patent number: 11982008Abstract: An electroplating system has a vessel assembly holding an electrolyte. A weir thief electrode assembly in the vessel assembly includes a plenum inside of a weir frame. The plenum divided into at least a first, a second and a third virtual thief electrode segment. A plurality of spaced apart openings through the weir frame lead out of the plenum. A weir ring is attached to the weir frame and guides flow of current during electroplating. The electroplating system provides process determined radial and circumferential current density control and does not require changing hardware components during set up.Type: GrantFiled: January 24, 2023Date of Patent: May 14, 2024Assignee: APPLIED Materials, Inc.Inventors: Paul R. McHugh, Gregory J. Wilson, Kyle M. Hanson, John L. Klocke, Paul Van Valkenburg, Eric J. Bergman, Adam Marc McClure, Deepak Saagar Kalaikadal, Nolan Layne Zimmerman, Michael Windham, Mikael R. Borjesson
-
Publication number: 20240071745Abstract: Methods, systems, and apparatus for cleaning and drying a tape-frame substrate are provided. In embodiments, an apparatus for supporting a tape-frame substrate includes a chuck having a first side and a second side opposite the first side, the first side having a convex surface configured to support the tape-frame substrate; and a plurality of channels extending through the chuck and having outlets along the first side, wherein the plurality of channels are configured to dispense fluid from the outlets along the convex surface of the first side. In embodiments, a support system includes the chuck and a holder configured to mount a tape-frame substrate to the chuck. The plurality of channels are configured to dispense fluid from the outlets and between the tape-frame substrate and the convex surface of the chuck when the tape-frame substrate is mounted to the chuck.Type: ApplicationFiled: October 25, 2023Publication date: February 29, 2024Inventors: Ying WANG, Guan Huei SEE, Gregory J. WILSON
-
Patent number: 11837464Abstract: Methods, systems, and apparatus for cleaning and drying a tape-frame substrate are provided. In embodiments, an apparatus for supporting a tape-frame substrate includes a chuck having a first side and a second side opposite the first side, the first side having a convex surface configured to support the tape-frame substrate; and a plurality of channels extending through the chuck and having outlets along the first side, wherein the plurality of channels are configured to dispense fluid from the outlets along the convex surface of the first side. In embodiments, a support system includes the chuck and a holder configured to mount a tape-frame substrate to the chuck. The plurality of channels are configured to dispense fluid from the outlets and between the tape-frame substrate and the convex surface of the chuck when the tape-frame substrate is mounted to the chuck.Type: GrantFiled: January 6, 2022Date of Patent: December 5, 2023Assignee: APPLIED MATERIALS, INC.Inventors: Ying Wang, Guan Huei See, Gregory J. Wilson
-
Patent number: 11814744Abstract: Systems for cleaning electroplating system components may include an electroplating apparatus including a plating bath vessel. The electroplating apparatus may include a rinsing frame extending above the plating bath vessel. The rinsing frame may include a rim extending circumferentially about an upper surface of the plating bath vessel and defining a rinsing channel between the rim and the upper surface of the plating bath vessel. The electroplating apparatus may also include a rinsing assembly including a splash guard that is translatable from a recessed first position to a second position extending at least partially across an access to the plating bath vessel. The rinsing assembly may also include a fluid nozzle extending from the rinsing frame.Type: GrantFiled: March 29, 2019Date of Patent: November 14, 2023Assignee: Applied Materials, Inc.Inventors: Nolan Zimmerman, Gregory J. Wilson, Andrew Anten, Richard W. Plavidal, Eric J. Bergman, Tricia Youngbull, Timothy Gale Stolt, Sam Lee
-
Publication number: 20230313406Abstract: Electroplating methods may include providing an electrolyte feedstock comprising copper to a first compartment of an electrochemical cell. The methods may include providing an acidic solution to a second compartment of the electrochemical cell. The first compartment and second compartment may be separated by a membrane. The methods may include applying a current to an anode of the electrochemical cell. The anode of the electrochemical cell may be disposed proximate the first compartment and across from the membrane. The methods may include forming an anolyte and catholyte precursor.Type: ApplicationFiled: April 3, 2023Publication date: October 5, 2023Applicant: Applied Materials, Inc.Inventors: Paul R. McHugh, Forrest G. Reinhart, Gregory J. Wilson, Kwan Wook Roh, Kyle M. Hanson, James E. Brown, David J. Reis
-
Publication number: 20230313405Abstract: Embodiments of the present technology include electroplating methods that include providing a first portion of an electrolyte feedstock to a first compartment of an electrochemical cell. The first portion of an electrolyte feedstock may be characterized by an initial metal ion concentration and an initial acid concentration. The methods may include providing a second portion of an electrolyte feedstock to a second compartment of the electrochemical cell. The second compartment and first compartment may be separated by a first membrane. The methods may include providing an acidic solution to a third compartment of the electrochemical cell. The third compartment and second compartment may be separated by a second membrane. The acidic solution may be characterized by an initial acid concentration. The methods may include applying a current to an anode of the electrochemical cell. The anode of the electrochemical cell may be disposed proximate the first compartment and across from the first membrane.Type: ApplicationFiled: April 3, 2023Publication date: October 5, 2023Applicant: Applied Materials, Inc.Inventors: Paul R. McHugh, Gregory J. Wilson, Kwan Wook Roh, Kyle M. Hanson, Forrest G. Reinhart, David J. Reis, James E. Brown, Nolan L. Zimmerman
-
Publication number: 20230307213Abstract: The disclosure describes a plasma source assemblies comprising a differential screw assembly, an RF hot electrode, a top cover, an upper housing and a lower housing. The differential screw assembly is configured to provide force to align the plasma source assembly vertically matching planarity of a susceptor. More particularly, the differential screw assembly increases a distance between the top cover and the upper housing to align the gap with the susceptor. The disclosure also provides a better thermal management by cooling fins. A temperature capacity of the plasma source assemblies is extended by using titanium electrode. The disclosure provides a cladding material covering a portion of a first surface of RF hot electrode, a second surface of RF hot electrode, a bottom surface of RF hot electrode, a portion of a surface of the showerhead and a portion of lower housing surface.Type: ApplicationFiled: June 5, 2023Publication date: September 28, 2023Applicant: Applied Materials, Inc.Inventors: Tsutomu Tanaka, Jared Ahmad Lee, Rakesh Ramadas, Dmitry A. Dzilno, Gregory J. Wilson, Sriharish Srinivasan
-
Publication number: 20230257900Abstract: A system may include a first semiconductor processing station configured to deposit a material on a first semiconductor wafer, a second semiconductor processing station configured perform measurements indicative of a thickness of the material after the material has been deposited on the first semiconductor wafer, and a controller. The controller may be configured to receive the measurements from the second station; provide an input based on the measurements to a trained model that is configured to generate an output that adjusts an operating parameter of the first station such that the thickness of the material is closer to a target thickness; and causing the first station to deposit the material on a second wafer using the operating parameter as adjusted by the output.Type: ApplicationFiled: February 11, 2022Publication date: August 17, 2023Applicant: Applied Materials, Inc.Inventors: Eric J. Bergman, Adam Marc McClure, Paul R. McHugh, Gregory J. Wilson, John L. Klocke
-
Publication number: 20230235474Abstract: Exemplary methods of semiconductor processing may include performing an electroplating operation on a semiconductor substrate in an electroplating bath within a vessel of an electroplating system. The methods may include removing the semiconductor substrate from the electroplating bath. The methods may include closing a valve associated with a first drain from the electroplating system. The methods may include increasing flow to a second drain from the electroplating system. The second drain may be associated with a drain channel from the vessel of the electroplating system.Type: ApplicationFiled: January 26, 2023Publication date: July 27, 2023Applicant: Applied Materials, Inc.Inventors: Joel L. Cannone, Gregory J. Wilson, Douglas William Carr, James E. Brown
-
Patent number: 11705312Abstract: The disclosure describes a plasma source assemblies comprising a differential screw assembly, an RF hot electrode, a top cover, an upper housing and a lower housing. The differential screw assembly is configured to provide force to align the plasma source assembly vertically matching planarity of a susceptor. More particularly, the differential screw assembly increases a distance between the top cover and the upper housing to align the gap with the susceptor. The disclosure also provides a better thermal management by cooling fins. A temperature capacity of the plasma source assemblies is extended by using titanium electrode. The disclosure provides a cladding material covering a portion of a first surface of RF hot electrode, a second surface of RF hot electrode, a bottom surface of RF hot electrode, a portion of a surface of the showerhead and a portion of lower housing surface.Type: GrantFiled: December 26, 2020Date of Patent: July 18, 2023Assignee: Applied Materials, Inc.Inventors: Tsutomu Tanaka, Jared Ahmad Lee, Rakesh Ramadas, Dmitry A. Dzilno, Gregory J. Wilson, Sriharish Srinivasan
-
Patent number: 11697887Abstract: Electroplating systems may include an electroplating chamber. The systems may also include a replenish assembly fluidly coupled with the electroplating chamber. The replenish assembly may include a first compartment housing anode material. The first compartment may include a first compartment section in which the anode material is housed and a second compartment section separated from the first compartment section by a divider. The replenish assembly may include a second compartment fluidly coupled with the electroplating chamber and electrically coupled with the first compartment. The replenish assembly may also include a third compartment electrically coupled with the second compartment, the third compartment including an inert cathode.Type: GrantFiled: October 23, 2020Date of Patent: July 11, 2023Assignee: Applied Materials, Inc.Inventors: Nolan L. Zimmerman, Charles Sharbono, Gregory J. Wilson, Paul R. McHugh, Paul Van Valkenburg, Deepak Saagar Kalaikadal, Kyle M. Hanson
-
Publication number: 20230215722Abstract: Methods, systems, and apparatus for cleaning and drying a tape-frame substrate are provided. In embodiments, an apparatus for supporting a tape-frame substrate includes a chuck having a first side and a second side opposite the first side, the first side having a convex surface configured to support the tape-frame substrate; and a plurality of channels extending through the chuck and having outlets along the first side, wherein the plurality of channels are configured to dispense fluid from the outlets along the convex surface of the first side. In embodiments, a support system includes the chuck and a holder configured to mount a tape-frame substrate to the chuck. The plurality of channels are configured to dispense fluid from the outlets and between the tape-frame substrate and the convex surface of the chuck when the tape-frame substrate is mounted to the chuck.Type: ApplicationFiled: January 6, 2022Publication date: July 6, 2023Inventors: Ying WANG, Guan Huei SEE, Gregory J. WILSON
-
Publication number: 20230193504Abstract: Systems and methods for electroplating are described. The electroplating system may include a vessel configured to hold a first portion of a liquid electrolyte. The system may also include a substrate holder configured for holding a substrate in the vessel. The system may further include a first reservoir in fluid communication with the vessel. In addition, the system may include a second reservoir in fluid communication with the vessel. Furthermore, the system may include a first mechanism configured to expel a second portion of the liquid electrolyte from the first reservoir into the vessel. The system may also include a second mechanism configured to take in a third potion of the liquid electrolyte from the vessel into the second reservoir when the second portion of the liquid electrolyte is expelled from the first reservoir. Methods may include oscillating flow of the electrolyte within the vessel.Type: ApplicationFiled: February 17, 2023Publication date: June 22, 2023Applicant: Applied Materials, Inc.Inventors: Paul R. McHugh, Gregory J. Wilson
-
Publication number: 20230167573Abstract: An electroplating system has a vessel assembly holding an electrolyte. A weir thief electrode assembly in the vessel assembly includes a plenum inside of a weir frame. The plenum divided into at least a first, a second and a third virtual thief electrode segment. A plurality of spaced apart openings through the weir frame lead out of the plenum. A weir ring is attached to the weir frame and guides flow of current during electroplating. The electroplating system provides process determined radial and circumferential current density control and does not require changing hardware components during set up.Type: ApplicationFiled: January 24, 2023Publication date: June 1, 2023Inventors: Paul R. McHugh, Gregory J. Wilson, Kyle M. Hanson, John L. Klocke, Paul Van Valkenburg, Eric J. Bergman, Adam Marc McClure, Deepak Saagar Kalaikadal, Nolan Layne Zimmerman, Michael Windham, Mikael R. Borjesson
-
Publication number: 20230092346Abstract: Exemplary electroplating systems may include a vessel. The systems may include a paddle disposed within the vessel. The paddle may be characterized by a first surface and a second surface. The first surface of the paddle may be include a plurality of ribs that extend upward from the first surface. The plurality of ribs may be arranged in a generally parallel manner about the first surface. The paddle may define a plurality of apertures through a thickness of the paddle. Each of the plurality of apertures may have a diameter of less than about 5 mm. The paddle may have an open area of less than about 15%.Type: ApplicationFiled: September 17, 2021Publication date: March 23, 2023Applicant: Applied Materials, Inc.Inventors: Charles Sharbono, Paul R. McHugh, Gregory J. Wilson, John L. Klocke, Nolan L. Zimmerman
-
Patent number: 11585009Abstract: Systems and methods for electroplating are described. The electroplating system may include a vessel configured to hold a first portion of a liquid electrolyte. The system may also include a substrate holder configured for holding a substrate in the vessel. The system may further include a first reservoir in fluid communication with the vessel. In addition, the system may include a second reservoir in fluid communication with the vessel. Furthermore, the system may include a first mechanism configured to expel a second portion of the liquid electrolyte from the first reservoir into the vessel. The system may also include a second mechanism configured to take in a third potion of the liquid electrolyte from the vessel into the second reservoir when the second portion of the liquid electrolyte is expelled from the first reservoir. Methods may include oscillating flow of the electrolyte within the vessel.Type: GrantFiled: January 24, 2022Date of Patent: February 21, 2023Assignee: Applied Materials, Inc.Inventors: Paul R. McHugh, Gregory J. Wilson
-
Patent number: 11578422Abstract: An electroplating system has a vessel assembly holding an electrolyte. A weir thief electrode assembly in the vessel assembly includes a plenum inside of a weir frame. The plenum divided into at least a first, a second and a third virtual thief electrode segment. A plurality of spaced apart openings through the weir frame lead out of the plenum. A weir ring is attached to the weir frame and guides flow of current during electroplating. The electroplating system provides process determined radial and circumferential current density control and does not require changing hardware components during set up.Type: GrantFiled: January 24, 2022Date of Patent: February 14, 2023Assignee: APPLIED MATERIALS, INC.Inventors: Paul R. McHugh, Gregory J. Wilson, Kyle M. Hanson, John L. Klocke, Paul Van Valkenburg, Eric J. Bergman, Adam Marc McClure, Deepak Saagar Kalaikadal, Nolan Layne Zimmerman, Michael Windham, Mikael R. Borjesson
-
Patent number: 11550224Abstract: Embodiments described herein relate to methods and apparatus for performing immersion field guided post exposure bake processes. Embodiments of apparatus described herein include a chamber body defining a processing volume. Electrodes may be disposed adjacent the process volume and process fluid is provided to the process volume via a plurality of fluid conduits to facilitate immersion field guided post exposure bake processes. A post process chamber for rinsing, developing, and drying a substrate is also provided.Type: GrantFiled: August 24, 2020Date of Patent: January 10, 2023Assignee: Applied Materials, Inc.Inventors: Kyle M. Hanson, Gregory J. Wilson, Viachslav Babayan