Patents by Inventor Gregory J. Wilson

Gregory J. Wilson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040007467
    Abstract: A method and apparatus for processing a microfeature workpiece. In one embodiment, the apparatus includes a support member configured to carry a microfeature workpiece at a workpiece plane, and a vessel positioned at least proximate to the support member. The vessel has a vessel surface facing toward the support member and positioned to carry a processing liquid. The vessel surface is shaped to provide an at least approximately uniform current density at the workpiece plane. At least one electrode, such as a thieving electrode, is disposed within the vessel. In a further aspect of this embodiment, the thieving electrode can be easily removable along with conductive material it attracts from the processing liquid. The shape of the vessel surface, the current supplied to the thieving electrode and/or the diameter of an aperture upstream of the workpiece are changed dynamically in other embodiments.
    Type: Application
    Filed: April 28, 2003
    Publication date: January 15, 2004
    Inventors: Paul R. McHugh, Gregory J. Wilson, Kyle M. Hanson
  • Patent number: 6660137
    Abstract: A reactor for electrochemically processing at least one surface of a microelectronic workpiece is set forth. The reactor comprises a reactor head including a workpiece support that has one or more electrical contacts positioned to make electrical contact with the microelectronic workpiece. The reactor also includes a processing container having a plurality of nozzles angularly disposed in a sidewall of a principal fluid flow chamber at a level within the principal fluid flow chamber below a surface of a bath of processing fluid normally contained therein during electrochemical processing. A plurality of anodes are disposed at different elevations in the principal fluid flow chamber so as to place them at difference distances from a microelectronic workpiece under process without an intermediate diffuser between the plurality of anodes and the microelectronic workpiece under process. One or more of the plurality of anodes may be in close proximity to the workpiece under process.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: December 9, 2003
    Assignee: Semitool, Inc.
    Inventors: Gregory J. Wilson, Paul R. McHugh, Kyle M. Hanson
  • Publication number: 20030141185
    Abstract: Contact assemblies for electrochemical processing of microelectronic workpieces. The contact assemblies can comprise a support member that includes an inner wall which defines an opening configured to receive the workpiece and a plurality of contacts. The individual contacts include a conductor and a cover. The conductor can comprise a proximal section projecting inwardly into the opening relative to the support member, a distal section extending from the proximal section, and an inert exterior at least at the distal section. The cover comprises a dielectric element that covers at least the proximal section of the conductor, but does not cover at least a portion of the distal section of the core. The exposed portion of the distal section of the core, accordingly, defines a conductive contact site for contacting a conductive layer (e.g., a seed layer) on the workpiece.
    Type: Application
    Filed: December 5, 2001
    Publication date: July 31, 2003
    Inventors: Gregory J. Wilson, John M. Pedersen, Steve L. Eudy
  • Publication number: 20030127337
    Abstract: An apparatus and method for electrochemical processing of microelectronic workpieces in a reaction vessel.
    Type: Application
    Filed: May 31, 2001
    Publication date: July 10, 2003
    Inventors: Kayle M. Hanson, Thomas L. Ritzdorf, Gregory J. Wilson, Paul R. McHugh
  • Patent number: 6569297
    Abstract: A processing container (610) for providing a flow of a processing fluid during immersion processing of at least one surface of a microelectronic workpiece is set forth. The processing container comprises a principal fluid flow chamber (505) providing a flow of processing fluid to at least one surface of the workpiece and a plurality of nozzles (535) disposed to provide a flow of processing fluid to the principal fluid flow chamber. The plurality of nozzles are arranged and directed to provide vertical and radial fluid flow components that combine to generate a substantially uniform normal flow component radially across the surface of the workpiece. An exemplary apparatus using such a processing container is also set forth that is particularly adapted to carry out an electroplating process.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: May 27, 2003
    Assignee: Semitool, Inc.
    Inventors: Gregory J. Wilson, Paul R. McHugh, Kyle M. Hanson
  • Patent number: 6565729
    Abstract: A process for metallization of a workpiece, such as a semiconductor workpiece. In an embodiment, an alkaline electrolytic copper bath is used to electroplate copper onto a seed layer, electroplate copper directly onto a barrier layer material, or enhance an ultra-thin copper seed layer which has been deposited on the barrier layer using a deposition process such as PVD. The resulting copper layer provides an excellent conformal copper coating that fills trenches, vias, and other microstructures in the workpiece. When used for seed layer enhancement, the resulting copper seed layer provide an excellent conformal copper coating that allows the microstructures to be filled with a copper layer having good uniformity using electrochemical deposition techniques. Further, copper layers that are electroplated in the disclosed manner exhibit low sheet resistance and are readily annealed at low temperatures.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: May 20, 2003
    Assignee: Semitool, Inc.
    Inventors: Linlin Chen, Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
  • Publication number: 20030066752
    Abstract: An electrochemical processing apparatus for processing a microelectronic workpiece includes a metrology unit and a control, signal-connected to the metrology unit. An electrochemical deposition unit provides a space to receive said microelectronic workpiece to deposit a subsequent film layer onto a prior layer, wherein a condition signal from the metrology unit influences the process control of the electrochemical deposition unit. The signal can also be used to transfer the microelectronic workpiece to a layer stripping unit, or a layer enhancement unit, or to a non-compliance station. The apparatus is particularly useful in measuring seed layer thickness and adjusting the operating control of a computational fluid dynamic reactor, which electroplates a process layer onto the seed layer.
    Type: Application
    Filed: August 6, 2002
    Publication date: April 10, 2003
    Inventors: Thomas L. Ritzdorf, Steve L. Eudy, Gregory J. Wilson, Paul R. McHugh
  • Publication number: 20030057614
    Abstract: An apparatus for thermally processing a microelectronic workpiece is set forth. The apparatus comprises a first assembly and a second assembly, disposed opposite one another, with an actuator disposed to provide relative movement between the first assembly and second assembly. More particularly, the actuator provides relative movement between at least a loading position in which the first assembly is in a state for loading or unloading of the microelectronic workpiece, and a thermal processing position in which the first assembly and second assembly are proximate one another and form a thermal processing chamber. A thermal transfer unit is disposed in the second assembly and has a workpiece support surface that is heated and cooled in a controlled manner.
    Type: Application
    Filed: August 27, 2002
    Publication date: March 27, 2003
    Inventors: Robert A. Weaver, Paul R. McHugh, Gregory J. Wilson
  • Publication number: 20030038035
    Abstract: A method and system for electrolytically processing a microelectronic workpiece. In one embodiment, the method includes contacting the workpiece with an electrolytic fluid, positioning one or more electrodes in electrical communication with the workpiece, directing an electrical current through the electrolytic fluid from the electrodes to the workpiece or vice versa, and actively changing a distribution of the current at the workpiece during the process. For example, the current can be changed such that a current ratio of at least one electrical current to the sum of the electrical currents shifts from a first current ratio value to a second current ratio value. Accordingly, the current applied to the workpiece can be adjusted to achieve a target shape for a conductive layer on the workpiece, or to account for temporally and/or spatially varying characteristics of the electrolytic process.
    Type: Application
    Filed: May 29, 2002
    Publication date: February 27, 2003
    Inventors: Gregory J. Wilson, Kenneth Gibbons, Paul R. McHugh
  • Publication number: 20030020928
    Abstract: A method and apparatus for processing a microelectronic workpiece using metrology. The apparatus can include one or more processing or transport units, a metrology unit, and a control unit coupled to the metrology unit and at least one of the processing or transport units. The control unit can modify a process recipe or a process sequence of the processing unit based on a feed forward or a feed back signal from the metrology unit. The control unit can also provide instructions to the transport unit to move the workpiece to a selected processing unit. The processing unit can include, inter alia, a seed layer deposition unit, a process layer electrochemical deposition unit, a seed layer enhancement unit, a chemical mechanical polishing unit, and/or an annealing chamber arranged for sequential processing of a workpiece. The processing units can be controlled as an integrated system using one or more metrology units, or a separate metrology unit can provide input to the processing units.
    Type: Application
    Filed: July 9, 2001
    Publication date: January 30, 2003
    Inventors: Thomas L. Ritzdorf, Steve L. Eudy, Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Brian Aegerter, Curt Dundas, Steven L. Peace
  • Patent number: 6471913
    Abstract: An apparatus for thermally processing a microelectronic workpiece is set forth. The apparatus comprises a first assembly and a second assembly, disposed opposite one another, with an actuator disposed to provide relative movement between the first assembly and second assembly. More particularly, the actuator provides relative movement between at least a loading position in which the first assembly is in a state for loading or unloading of the microelectronic workpiece, and a thermal processing position in which the first assembly and second assembly are proximate one another and form a thermal processing chamber. A thermal transfer unit is disposed in the second assembly and has a workpiece support surface that is heated and cooled in a controlled manner.
    Type: Grant
    Filed: February 9, 2000
    Date of Patent: October 29, 2002
    Assignee: Semitool, Inc.
    Inventors: Robert A. Weaver, Paul R. McHugh, Gregory J. Wilson
  • Publication number: 20020139678
    Abstract: A facility for selecting and refining electrical parameters for processing a microelectronic workpiece in a processing chamber is described. The facility initially configures the electrical parameters in accordance with either a mathematical model of the processing chamber or experimental data derived from operating the actual processing chamber. After a workpiece is processed with the initial parameter configuration, the results are measured and a sensitivity matrix based upon the mathematical model of the processing chamber is used to select new parameters that correct for any deficiencies measured in the processing of the first workpiece. These parameters are then used in processing a second workpiece, which may be similarly measured, and the results used to further refine the parameters.
    Type: Application
    Filed: May 24, 2001
    Publication date: October 3, 2002
    Inventors: Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
  • Publication number: 20020125141
    Abstract: A facility for selecting and refining electrical parameters for processing a microelectronic workpiece in a processing chamber is described. The facility initially configures the electrical parameters in accordance with either a mathematical model of the processing chamber or experimental data derived from operating the actual processing chamber. After a workpiece is processed with the initial parameter configuration, the results are measured and a sensitivity matrix based upon the mathematical model of the processing chamber is used to select new parameters that correct for any deficiencies measured in the processing of the first workpiece. These parameters are then used in processing a second workpiece, which may be similarly measured, and the results used to further refine the parameters.
    Type: Application
    Filed: May 24, 2001
    Publication date: September 12, 2002
    Inventors: Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
  • Patent number: 6428673
    Abstract: An electrochemical processing apparatus for processing a microelectronic workpiece includes a metrology unit and a control, signal-connected to the metrology unit. An electrochemical deposition unit provides a space to receive said microelectronic workpiece to deposit a subsequent film layer onto a prior layer, wherein a condition signal from the metrology unit influences the process control of the electrochemical deposition unit. The signal can also be used to transfer the microelectronic workpiece to a layer stripping unit, or a layer enhancement unit, or to a non-compliance station. The apparatus is particularly useful in measuring seed layer thickness and adjusting the operating control of a computational fluid dynamic reactor, which electroplates a process layer onto the seed layer.
    Type: Grant
    Filed: July 8, 2000
    Date of Patent: August 6, 2002
    Assignee: Semitool, Inc.
    Inventors: Thomas L. Ritzdorf, Steve L. Eudy, Gregory J. Wilson, Paul R. McHugh
  • Publication number: 20020096508
    Abstract: An apparatus and method for processing a microelectronic workpiece at an elevated temperature. In one embodiment, the apparatus includes a workpiece support positioned to engage and support the microelectronic workpiece during operation. The apparatus can further include a heat source having a solid engaging surface positioned to engage a surface of the microelectronic workpiece with at least one of the heat source and the workpiece support being movable relative to the other between a first position with the microelectronic workpiece contacting the engaging surface of the heat source and a second position with the microelectronic workpiece spaced apart from the engaging surface. The heat source is sized to transfer heat to the microelectronic workpiece at a rate sufficient to thermally process a selected material of the microelectronic workpiece when the microelectronic workpiece is engaged with the heat source.
    Type: Application
    Filed: December 8, 2000
    Publication date: July 25, 2002
    Inventors: Robert A. Weaver, Gregory J. Wilson, Paul R. McHugh
  • Publication number: 20020079215
    Abstract: A processing container (610) for providing a flow of a processing fluid during immersion processing of at least one surface of a microelectronic workpiece is set forth. The processing container comprises a principal fluid flow chamber (505) providing a flow of processing fluid to at least one surface of the workpiece and a plurality of nozzles (535) disposed to provide a flow of processing fluid to the principal fluid flow chamber. The plurality of nozzles are arranged and directed to provide vertical and radial fluid flow components that combine to generate a substantially uniform normal flow component radially across the surface of the workpiece. An exemplary apparatus using such a processing container is also set forth that is particularly adapted to carry out an electroplating process.
    Type: Application
    Filed: March 12, 2001
    Publication date: June 27, 2002
    Inventors: Gregory J. Wilson, Paul R. McHugh, Kyle M. Hanson
  • Publication number: 20020053509
    Abstract: Processing tools, components of tools, and methods of making and using such devices for electrochemical processing of microelectronic workpieces. One aspect of the invention is directed toward reaction vessels for electrochemical processing of microelectronic workpieces, processing stations including such reaction vessels, and methods for using these devices. For example, one embodiment of a reaction vessel includes an outer container having an outer wall, a first outlet configured to introduce a primary fluid flow into the outer container, and at least one second outlet configured to introduce a secondary fluid flow into the outer container separate from the primary fluid flow. The reaction vessel can also include at least one electrode, and it can also have a field shaping unit.
    Type: Application
    Filed: June 15, 2001
    Publication date: May 9, 2002
    Inventors: Kyle M. Hanson, Steve L. Eudy, Thomas L. Ritzdorf, Gregory J. Wilson, Daniel J. Woodruff, Randy Harris, Curtis A. Weber, Tim McGlenn, Timothy A. Anderson, Daniel P. Bexten
  • Publication number: 20020032499
    Abstract: A facility for selecting and refining electrical parameters for processing a microelectronic workpiece in a processing chamber is described. The facility initially configures the electrical parameters in accordance with either a numerical of the processing chamber or experimental data derived from operating the actual processing chamber. After a workpiece is processed with the initial parameter configuration, the results are measured and a sensitivity matrix based upon the numerical model of the processing chamber is used to select new parameters that correct for any deficiencies measured in the processing of the first workpiece. These parameters are then used in processing a second workpiece, which may be similarly measured, and the results used to further refine the parameters.
    Type: Application
    Filed: May 4, 2001
    Publication date: March 14, 2002
    Inventors: Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
  • Publication number: 20020008034
    Abstract: A process for metallization of a workpiece, such as a semiconductor workpiece. In an embodiment, an alkaline electrolytic copper bath is used to electroplate copper onto a seed layer, electroplate copper directly onto a barrier layer material, or enhance an ultra-thin copper seed layer which has been deposited on the barrier layer using a deposition process such as PVD. The resulting copper layer provides an excellent confirm copper coating that fills trenches, vias, and other microstructures in the workpiece. When used for seed layer enhancement, the resulting copper seed layer provide an excellent conformal copper coating that allows the microstructures to be filled with a copper layer having good uniformity using electrochemical deposition techniques. Further, copper layers that are electroplated in the disclosed manner exhibit low sheet resistance and are readily annealed at low temperatures.
    Type: Application
    Filed: December 7, 2000
    Publication date: January 24, 2002
    Inventors: Linlin Chen, Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
  • Publication number: 20020008037
    Abstract: A reactor for electrochemically processing at least one surface of a microelectronic workpiece is set forth. The reactor comprises a reactor head including a workpiece support that has one or more electrical contacts positioned to make electrical contact with the microelectronic workpiece. The reactor also includes a processing container having a plurality of nozzles angularly disposed in a sidewall of a principal fluid flow chamber at a level within the principal fluid flow chamber below a surface of a bath of processing fluid normally contained therein during electrochemical processing. A plurality of anodes are disposed at different elevations in the principal fluid flow chamber so as to place them at difference distances from a microelectronic workpiece under process without an intermediate diffuser between the plurality of anodes and the microelectronic workpiece under process. One or more of the plurality of anodes may be in close proximity to the workpiece under process.
    Type: Application
    Filed: March 12, 2001
    Publication date: January 24, 2002
    Inventors: Gregory J. Wilson, Paul R. McHugh, Kyle M. Hanson