Patents by Inventor Guenther Ruhl

Guenther Ruhl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11557505
    Abstract: A method for manufacturing a semiconductor device includes implanting gas ions in a donor wafer and bonding the donor wafer to a carrier wafer to form a compound wafer. The method also includes subjecting the compound wafer to a thermal treatment to cause separation along a delamination layer and growing an epitaxial layer on a portion of separated compound wafer to form a semiconductor device layer. The method further includes cutting the carrier wafer.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: January 17, 2023
    Assignee: Infineon Technologies AG
    Inventors: Wolfgang Lehnert, Rudolf Berger, Rudolf Lehner, Gerhard Metzger-Brueckl, Guenther Ruhl
  • Patent number: 11105760
    Abstract: A fluid sensor comprises a sensor material configured to come into contact at a surface region of same with a fluid and to obtain a first temporal change of a resistance value of the sensor material on the basis of the contact in a first sensor configuration and to obtain a second temporal change of the resistance value of the sensor material on the basis of the contact in a second sensor configuration. The fluid sensor comprises an output element configured to provide a sensor signal on the basis of the first and second temporal change of the resistance value.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: August 31, 2021
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Matthias Koenig, Guenther Ruhl
  • Publication number: 20210013090
    Abstract: A method for manufacturing a semiconductor device includes implanting gas ions in a donor wafer and bonding the donor wafer to a carrier wafer to form a compound wafer. The method also includes subjecting the compound wafer to a thermal treatment to cause separation along a delamination layer and growing an epitaxial layer on a portion of separated compound wafer to form a semiconductor device layer. The method further includes cutting the carrier wafer.
    Type: Application
    Filed: September 22, 2020
    Publication date: January 14, 2021
    Inventors: Wolfgang Lehnert, Rudolf Berger, Rudolf Lehner, Gerhard Metzger-Brueckl, Guenther Ruhl
  • Patent number: 10784145
    Abstract: A wafer composite is provided which includes an auxiliary substrate, a donor substrate and a sacrificial layer formed between the auxiliary substrate and the donor substrate. Functional elements of the semiconductor component are formed in a component layer, including at least one partial layer of the donor substrate. The auxiliary substrate is then separated from the component layer by heat input into the sacrificial layer.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: September 22, 2020
    Assignee: Infineon Technologies AG
    Inventors: Rudolf Berger, Wolfgang Lehnert, Gerhard Metzger-Brueckl, Guenther Ruhl, Roland Rupp
  • Patent number: 10672875
    Abstract: A method for forming a silicon carbide semiconductor device includes forming at least one graphene layer on a surface of a semiconductor substrate and forming a silicon carbide layer of the silicon carbide semiconductor device on the at least one graphene layer. At least one of forming the silicon carbide layer and forming the at least one graphene layer includes: heating the semiconductor substrate an inert gas atmosphere until a predefined temperature is reached.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: June 2, 2020
    Assignee: Infineon Technologies AG
    Inventors: Roland Rupp, Guenther Ruhl, Hans-Joachim Schulze
  • Patent number: 10670474
    Abstract: Temperature sensor devices and corresponding methods are provided. A temperature sensor may include a first layer being essentially non-conductive in a temperature range and a second layer having a varying resistance in the temperature range.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: June 2, 2020
    Assignee: Infineon Technologies AG
    Inventors: Christian Kegler, Johannes Georg Laven, Hans-Joachim Schulze, Guenther Ruhl, Joachim Mahler
  • Patent number: 10651072
    Abstract: This application relates to a method for producing a semiconductor component, in which a wafer composite is provided. The wafer composite includes a donor substrate, an auxiliary substrate and a separation layer arranged between the auxiliary substrate and the donor substrate. The separation layer has a support structure and sacrificial material, which is formed laterally between elements of the support structure. The auxiliary substrate is separated from the donor substrate. The separation includes a selective removal of the sacrificial material in relation to the support structure.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: May 12, 2020
    Assignee: Infineon Technologies AG
    Inventors: Rudolf Berger, Wolfgang Lehnert, Gerhard Metzger-Brueckl, Guenther Ruhl, Roland Rupp
  • Patent number: 10431504
    Abstract: A semiconductor disk of a first crystalline material, which has a first lattice system, is bonded on a process surface of a base substrate, wherein a bonding layer is formed between the semiconductor disk and the base substrate. A second semiconductor layer of a second crystalline material with a second, different lattice system is formed by epitaxy on a first semiconductor layer formed from the semiconductor disk.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: October 1, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Wolfgang Lehnert, Rudolf Berger, Albert Birner, Helmut Brech, Oliver Häberlen, Guenther Ruhl, Roland Rupp
  • Patent number: 10421665
    Abstract: A process for the formation of a graphene membrane component includes arranging a graphene membrane in a relaxed condition of the graphene membrane on a surface of a supportive substrate. The graphene membrane extends across a cut-out with an opening at the surface of the supportive substrate. The graphene membrane is moreover arranged so that a first portion of the graphene membrane is arranged on the surface of the supportive substrate and a second portion of the graphene membrane is arranged over the opening of the cut-out. The process further includes tensioning of the second portion of the graphene membrane, in order to convert the second portion of the graphene membrane to a tensioned condition, so that the second portion of the graphene membrane is permanently in the tensioned condition in an operating temperature range of the graphene membrane component.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: September 24, 2019
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Guenther Ruhl, Matthias Koenig
  • Patent number: 10403556
    Abstract: A semiconductor device includes a drift structure formed in a semiconductor body. The drift structure forms a first pn junction with a body zone of a transistor cell. A gate structure extends from a first surface of the semiconductor body into the drift structure. A heat sink structure extends from the first surface into the drift structure. A thermal conductivity of the heat sink structure is greater than a thermal conductivity of the gate structure and/or a thermal capacity of the heat sink structure is greater than a thermal capacity of the gate structure.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: September 3, 2019
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Peter Irsigler, Joachim Mahler, Guenther Ruhl, Hans-Joachim Schulze, Markus Zundel
  • Patent number: 10396170
    Abstract: A semiconductor device includes a transistor doping region of a vertical transistor structure arranged in a semiconductor substrate. Additionally, the semiconductor device includes a graphene layer portion located adjacent to at least a portion of the transistor doping region at a surface of the semiconductor substrate. The semiconductor device further includes a transistor wiring structure located adjacent to the graphene layer portion.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: August 27, 2019
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Guenther Ruhl, Roland Rupp
  • Publication number: 20190244850
    Abstract: This application relates to a method for producing a semiconductor component, in which a wafer composite is provided. The wafer composite includes a donor substrate, an auxiliary substrate and a separation layer arranged between the auxiliary substrate and the donor substrate. The separation layer has a support structure and sacrificial material, which is formed laterally between elements of the support structure. The auxiliary substrate is separated from the donor substrate. The separation includes a selective removal of the sacrificial material in relation to the support structure.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 8, 2019
    Inventors: Rudolf Berger, Wolfgang Lehnert, Gerhard Metzger-Brueckl, Guenther Ruhl, Roland Rupp
  • Publication number: 20190244853
    Abstract: A wafer composite is provided which includes an auxiliary substrate, a donor substrate and a sacrificial layer formed between the auxiliary substrate and the donor substrate. Functional elements of the semiconductor component are formed in a component layer, including at least one partial layer of the donor substrate. The auxiliary substrate is then separated from the component layer by heat input into the sacrificial layer.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 8, 2019
    Inventors: Rudolf Berger, Wolfgang Lehnert, Gerhard Metzger-Brueckl, Guenther Ruhl, Roland Rupp
  • Patent number: 10370240
    Abstract: A layer structure may include a carrier, a two-dimensional layer, and a holding structure. The holding structure is arranged on the carrier and holds the two-dimensional layer on the carrier such that at least a portion of the two-dimensional layer is spaced apart from the carrier. The holding structure includes a holding portion extending from the two-dimensional layer towards the carrier beyond the at least a portion of the two-dimensional layer spaced apart from the carrier.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: August 6, 2019
    Assignee: Infineon Technologies AG
    Inventors: Matthias Koenig, Guenther Ruhl
  • Patent number: 10347723
    Abstract: A method for manufacturing a semiconductor device includes: providing a carrier wafer and a silicon carbide wafer; forming a first graphene material on a first side of the silicon carbide wafer; bonding the first side of the silicon carbide wafer with the first graphene material to the carrier wafer; and splitting the silicon carbide wafer bonded to the carrier wafer into a silicon carbide layer thinner than the silicon carbide wafer and a residual silicon carbide wafer, the silicon carbide layer remaining bonded to the carrier wafer during the splitting.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: July 9, 2019
    Assignee: Infineon Technologies AG
    Inventors: Guenther Ruhl, Gunther Lippert, Hans-Joachim Schulze, Thomas Zimmer
  • Publication number: 20190123148
    Abstract: A method for forming a silicon carbide semiconductor device includes forming at least one graphene layer on a surface of a semiconductor substrate and forming a silicon carbide layer of the silicon carbide semiconductor device on the at least one graphene layer. At least one of forming the silicon carbide layer and forming the at least one graphene layer includes: heating the semiconductor substrate an inert gas atmosphere until a predefined temperature is reached.
    Type: Application
    Filed: December 18, 2018
    Publication date: April 25, 2019
    Inventors: Roland Rupp, Guenther Ruhl, Hans-Joachim Schulze
  • Patent number: 10241088
    Abstract: A photo-acoustic gas sensor includes a light emitter unit having a light emitter configured to emit a beam of light pulses with a predetermined repetition frequency and a wavelength corresponding to an absorption band of a gas to be sensed, and a detector unit having a microphone. The light emitter unit is arranged so that the beam of light pulses traverses an area configured to accommodate the gas. The detector unit is arranged so that the microphone can receive a signal oscillating with the repetition frequency.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: March 26, 2019
    Assignee: Infineon Technologies AG
    Inventors: Horst Theuss, Gottfried Beer, Sebastian Beer, Alfons Dehe, Franz Jost, Stefan Kolb, Guenther Ruhl, Rainer Markus Schaller
  • Publication number: 20190081143
    Abstract: A method for manufacturing a semiconductor device includes: providing a carrier wafer and a silicon carbide wafer; forming a first graphene material on a first side of the silicon carbide wafer; bonding the first side of the silicon carbide wafer with the first graphene material to the carrier wafer; and splitting the silicon carbide wafer bonded to the carrier wafer into a silicon carbide layer thinner than the silicon carbide wafer and a residual silicon carbide wafer, the silicon carbide layer remaining bonded to the carrier wafer during the splitting.
    Type: Application
    Filed: November 13, 2018
    Publication date: March 14, 2019
    Inventors: Guenther Ruhl, Gunther Lippert, Hans-Joachim Schulze, Thomas Zimmer
  • Publication number: 20190077671
    Abstract: A process for the formation of a graphene membrane component includes arranging a graphene membrane in a relaxed condition of the graphene membrane on a surface of a supportive substrate. The graphene membrane extends across a cut-out with an opening at the surface of the supportive substrate. The graphene membrane is moreover arranged so that a first portion of the graphene membrane is arranged on the surface of the supportive substrate and a second portion of the graphene membrane is arranged over the opening of the cut-out. The process further includes tensioning of the second portion of the graphene membrane, in order to convert the second portion of the graphene membrane to a tensioned condition, so that the second portion of the graphene membrane is permanently in the tensioned condition in an operating temperature range of the graphene membrane component.
    Type: Application
    Filed: November 7, 2018
    Publication date: March 14, 2019
    Inventors: Guenther Ruhl, Matthias Koenig
  • Patent number: 10209212
    Abstract: According to various embodiments, a sensor arrangement for particle analysis may include: a base electrode configured to generate an electrical field for particle attraction; a support layer disposed over the base electrode; a sensor array disposed over the support layer and including or formed from a plurality of sensor elements, wherein each sensor element of the plurality of sensor elements is configured to generate or modify an electrical signal in response to a particle at least one of adsorbed to and approaching the sensor element; and an electrical contact structure may include or be formed from a plurality of contact lines, wherein each contact line of the plurality of contact lines is electrically connected to a respective sensor element of the plurality of sensor elements, such that each sensor element of the plurality of sensor elements is addressable via the contact structure.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: February 19, 2019
    Assignee: Infineon Technologies AG
    Inventors: Guenther Ruhl, Thomas Hirsch, Gerhard Poeppel, Herbert Roedig