Patents by Inventor Gun Yong Sung

Gun Yong Sung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8292608
    Abstract: There are provided an apparatus for fixing a plastic sheet which fixes a plastic sheet to fabricate a nano pattern and a method of fabricating a nano pattern on a plastic sheet using the same. The apparatus for fixing a plastic sheet includes: a pair of planar metal guide rings interposingly fixing a plastic sheet from above and below, respectively; and a sheet fixing chuck including: a ring fixer sucking the pair of planar metal guide rings through a vacuum groove to be fixed thereto; and a sheet fixer having a plurality of vacuum pin holes formed therein, the vacuum pin holes sucking a bottom of the plastic sheet fixed by the planar metal guide rings. The apparatus allows fabrication of the nano pattern on the plastic sheet having less roughness than that of a semiconductor substrate or a glass substrate.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: October 23, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Kyung Hyun Kim, Chul Huh, Hyun Sung Ko, Jong Cheol Hong, Wan Joong Kim, Gun Yong Sung, Seon Hee Park
  • Publication number: 20120258882
    Abstract: Provided is a method for quantitatively detecting biomolecules with high sensitivity for a short time by using nanoparticles and a metal deposition method in an immuno-detection using a well-type plastic substrate.
    Type: Application
    Filed: April 10, 2012
    Publication date: October 11, 2012
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Chil Seong Ah, Chang Geun Ahn, Tae Youb Kim, Gun Yong Sung
  • Patent number: 8277644
    Abstract: Provided is a filtering device including a filter part having a plurality of filters stacked to filter contaminants in fluid, and a sample part disposed on an outer plane of the filter part and having a plurality of samples corresponding to the filters, respectively. Therefore, a filter exchange period can be accurately determined by measuring properties of the filter varied during filtering of contaminants, and indiscriminate exchange of the filters can be prevented to reduce maintenance cost.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: October 2, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Bong Kyu Kim, Wan Joong Kim, Gun Yong Sung, Seon Hee Park
  • Patent number: 8273567
    Abstract: There is provided a portable measuring system having a biophotonic sensor. The portable measuring system also includes a tunable light source, an output intensity detector and an output wavelength detector, which are mounted therein. The portable measuring system can precisely measure a variation in the reflectivity spectrum and/or the transmittance spectrum of the biophotonic sensor before and after an antigen-antibody reaction by varying the wavelength of the tunable light source. Thus, the concentration of the antigen is precisely measured.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: September 25, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun Sung Ko, Chul Huh, Kyung Hyun Kim, Jong Cheol Hong, Wan Joong Kim, Gun Yong Sung, Seon Hee Park
  • Patent number: 8275008
    Abstract: A semiconductor laser apparatus is provided which can vary an output wavelength of a light source. A semiconductor laser diode and one or more heat source devices arranged around the semiconductor laser diode are integrated on one substrate. The semiconductor laser diode is configured to be uniformly heated by the heat source device. An output wavelength of the semiconductor laser diode can be easily and quickly varied.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: September 25, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun Sung Ko, Chul Huh, Kyung Hyun Kim, Jong Cheol Hong, Wan Joong Kim, Gun Yong Sung, Seon Hee Park
  • Patent number: 8228502
    Abstract: Provided is a measurement device. The measurement device includes a sensor, a wavelength-tunable light source, an additional light source, a coupler, and an optical power measurer. The sensor accepts a sample. The wavelength-tunable light source irradiates wavelength-tunable light to detect a reaction of the sensor. The additional light source irradiates wavelength-fixed light to detect an initial time of the reaction. The coupler combines the wavelength-tunable light source and the additional light source and irradiates the combined input light on the sensor. The optical power measurer detects the reaction of the sensor from an output light transmitted through or reflected by the sensor.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: July 24, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyunsung Ko, Chul Huh, Kyung Hyun Kim, Wanjoong Kim, Bong Kyu Kim, Gun Yong Sung, Seon Hee Park
  • Patent number: 8222055
    Abstract: Provided are a silicon nitride layer for a light emitting device, light emitting device using the same, and method of forming the silicon nitride layer for the light emitting device. The silicon nitride layer of the light emitting device includes a silicon nitride matrix and silicon nanocrystals formed in the silicon nitride matrix. A light emitting device manufactured by the silicon nitride layer has a good luminous efficiency and emits light in the visible region including the short-wavelength blue/violet region and the near infrared region.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: July 17, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Tae Youb Kim, Nae Man Park, Kyung Hyun Kim, Gun Yong Sung
  • Publication number: 20120164747
    Abstract: The present invention relates to a plasma extraction method in which a complex of a blood cell-specific antibody and a protein having the ability to bind to the Fc region of the antibody is used to induce the agglutination of blood cells in blood, thereby increasing plasma separation efficiency, and to a plasma separation device therefor. According to the method, plasma can be separated from whole blood in high efficiency, and rapid plasma separation is possible, so that rapid diagnosis can be performed even with a small amount of blood.
    Type: Application
    Filed: December 9, 2011
    Publication date: June 28, 2012
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: YO HAN CHOI, KWANG HYO CHUNG, GUN YONG SUNG
  • Patent number: 8199325
    Abstract: Provided are an apparatus and method for detecting biomaterials. The apparatus for detecting the biomaterials includes a light source unit, a biomaterial reacting unit, and a detection unit detecting. The light source unit provides incident light. The biomaterial reacting unit includes a substrate and metal nanoparticles spaced from the substrate. The surface plasmon resonance phenomenon is induced on surfaces of the metal nanoparticles by the incident light. First detecting molecules specifically binding to target molecules are immobilized to the surfaces of the metal nanoparticles. The detection unit detects a resonance wavelength of emission light emitted from the metal nanoparticles by the surface plasmon resonance phenomenon.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: June 12, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Wanjoong Kim, Chul Huh, Hyunsung Ko, Kyung Hyun Kim, Gun Yong Sung, Seon Hee Park, Bong Kyu Kim, Chil Seong Ah, Ansoon Kim
  • Publication number: 20120138534
    Abstract: Disclosed are a method and an apparatus for filtering plasma using magnetic force. The apparatus for filtering plasma using magnetic force includes: an inlet into which blood is injected; a filter unit filtering plasma in the blood passing through the inlet by capillary force; a magnetic force receiving part made of magnetizable materials and assisting plasma filtering by applying pressure to the filter unit by movement due to magnetic force generated from the outside; an outlet discharging plasma filtered from blood; and a filter outer body surrounding the inlet, the filter unit, the magnetic receiving part, and the outlet.
    Type: Application
    Filed: October 31, 2011
    Publication date: June 7, 2012
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Kwang Hyo CHUNG, Yo Han CHOI, Chang-Geun AHN, Gun Yong SUNG
  • Publication number: 20120142017
    Abstract: Disclosed is a biosensor device, comprising: a capillary tube with probe molecules immobilized on the inner wall surface thereof, and a liquid sample containing target molecules, said biosensor device being characterized in that a contact angle between the inner wall surface of the capillary tube and the liquid sample changes because of the specific interaction between the probe molecules and the target molecules, which leads, in turn, to a change in the height of the liquid sample in the capillary tube.
    Type: Application
    Filed: November 4, 2011
    Publication date: June 7, 2012
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Chan-Woo PARK, Jong-Heon Yang, Chil-Seong Ah, Wan-Joong Kim, Chang-Geun Ahn, Gun-Yong Sung
  • Publication number: 20120143513
    Abstract: Provided are a bio sensor chip and a reader thereof. The bio-sensor chip is optically addressed. The bio-sensor chip includes a word line control circuit and a bit line control circuit controlled by light provided from the bio-sensor chip reader. The bio-sensor chip does not require a peripheral circuit for driving word lines and bit lines, simplifying a fabrication process and reducing the area of the chip.
    Type: Application
    Filed: August 26, 2011
    Publication date: June 7, 2012
    Applicant: Electronics and Telecommunications Research
    Inventors: Jong-Heon YANG, Chang-Geun Ahn, Chan Woo Park, Chil Seong Ah, Wan Joong Kim, Kwang Hyo Chung, Yo Han Choi, Gun Yong Sung
  • Publication number: 20120141327
    Abstract: A label-free biosensor includes a substrate, a reaction inducing part for inducing a bio antigen-antibody reaction to occur, and a reaction detecting part formed on the substrate and adapted to measure current change in accordance with change in an amount of light, which is caused by the bio antigen-antibody reaction in the reaction inducing part, to detect a bio antigen.
    Type: Application
    Filed: October 27, 2011
    Publication date: June 7, 2012
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Chul HUH, Bong Kyu Kim, Wan Joong Kim, Jong Cheol Hong, Gun Yong Sung
  • Patent number: 8169006
    Abstract: Provided is a bio-sensor chip. The bio-sensor chip includes a sensing part, a board circuit part, a channel part, and a cover. In the sensing part, a target material and a detection material interact with each other to detect the target material. The board circuit part is electrically connected to the sensing part. The channel part provides a solution material containing the target material into the sensing part. The cover is coupled to the board circuit part to cover the channel part and the sensing part.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: May 1, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Taeyoub Kim, Jong-Heon Yang, Chang-Geun Ahn, Chan Woo Park, Chil Seong Ah, Ansoon Kim, In Bok Baek, Gun Yong Sung, Seon Hee Park
  • Patent number: 8164123
    Abstract: Provided are a biosensor and a method of driving the same. The biosensor includes a transistor including a substrate including a source, a drain, and a channel formed between the source and the drain, a gate insulating layer formed on the channel, and a source electrode and a drain electrode respectively connected with the source and the drain, a fluid line for covering the transistor to have an inner space together with the transistor and in which a sample solution including target molecules flows, a reference electrode formed on an inner wall of the fluid line, and a probe molecule layer attached on the reference electrode and reacting with the target molecules. Accordingly, the reference electrode is formed on the inner wall of the fluid line, enabling miniaturization of the bio device.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: April 24, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Chan Woo Park, Chang Geun Ahn, Chil Seong Ah, Tae Youb Kim, An Soon Kim, Jong Heon Yang, Gun Yong Sung
  • Publication number: 20120070910
    Abstract: Provided is a microanalysis method and system using a Field Effect Transistor (FET). The microanalysis method includes a channel region having a receptor molecule fixed; forming a nano-particle conjugate in the channel region by supplying a sample for test and the nano-particle conjugate to the FET; growing a probe material on the channel region; and measuring a current flowing through the channel region, wherein the receptor molecule is a material that is selectively bonded to a target molecule in the sample for test.
    Type: Application
    Filed: September 15, 2011
    Publication date: March 22, 2012
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Chil Seong Ah, Jong-Heon Yang, Chan Woo Park, Chang-Geun Ahn, Gun Yong Sung
  • Patent number: 8119430
    Abstract: Provided are a method of manufacturing a semiconductor nanowire sensor device and a semiconductor nanowire sensor device manufactured according to the method. The method includes preparing a first conductive type single crystal semiconductor substrate, forming a line-shaped first conductive type single crystal pattern from the first conductive type single crystal semiconductor substrate, forming second conductive type epitaxial patterns on both sidewalls of the first conductive type single crystal pattern, and forming source and drain electrodes at both ends of the second conductive type epitaxial patterns.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: February 21, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Chan-Woo Park, Chang-Geun Ahn, Jong-Heon Yang, In-Bok Baek, Chil-Seong Ah, An-Soon Kim, Tae-Youb Kim, Gun-Yong Sung, Seon-Hee Park
  • Publication number: 20110293479
    Abstract: A cartridge for measuring a biological sample component and an apparatus for measuring a biological sample component are provided. The cartridge for measuring a biological sample component includes: an upper cartridge having a first chamber storing a biological sample, a first channel connected to the first chamber and delivering air pressure to the first chamber, and a third channel transferring the biological sample; and a lower cartridge having a third chamber storing a first reagent, a fifth chamber storing a second reagent, a fifth channel connecting the third and fifth chambers and transferring the second reagent to the third chamber, an eleventh channel delivering the biological sample delivered through the third channel to the third chamber, and a thirteenth channel delivering air pressure to the fifth chamber, wherein when the upper and lower cartridges are bounded by an external force, the third channel and the eleventh channel are connected.
    Type: Application
    Filed: November 19, 2010
    Publication date: December 1, 2011
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Jong Cheol HONG, Chul Huh, Bong Kyu Kim, Chil Seong Ah, Yo Han Choi, Gun Yong Sung
  • Publication number: 20110272271
    Abstract: Provided is a microfluidic injection device and a method for injecting microfluidic. The microfluidic injection device includes a fluid injection chamber, a gas generation chamber applying pressure to the fluid injection chamber, and a channel connecting the fluid injection chamber to the gas generation chamber.
    Type: Application
    Filed: May 4, 2011
    Publication date: November 10, 2011
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Jongcheol HONG, Wan Joong Kim, Chul Huh, Bong Kyu Kim, Chil Seong Ah, Gun Yong Sung
  • Patent number: 8018595
    Abstract: Provided is an apparatus for detecting bio materials and a method for detecting bio materials by using the apparatus. The apparatus includes a bio material reacting unit, an optical source unit, and a detecting unit. The bio material reacting unit includes bio sensing materials immobilized on gold nanoparticles. The optical source unit emits light toward the bio material reacting unit. The detecting unit measures variations of surface absorbance of the gold nanoparticles by detecting light transmitted through the bio material reacting unit before and after a bio material is bound to the bio sensing materials.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: September 13, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Chul Huh, Kyung Hyun Kim, Hyunsung Ko, Wanjoong Kim, Gun Yong Sung, Seon-Hee Park, Bong-Kyu Kim