Patents by Inventor Gunnar Mildh

Gunnar Mildh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200145887
    Abstract: A radio device configures a radio connection between the radio device and a cellular network. The radio connection is registered for a cell area comprising at least a first cell and a second cell of the cellular network. Before a decision of the radio device to perform a change from the first cell to the second cell, the radio device determines a configuration which enables performing allocation of radio resources to the radio device via a control channel of the second cell. After the change of the radio device from the first cell to the second cell, the radio device resumes transmission on the radio connection by requesting allocation of radio resources of second cell based on the determined configuration.
    Type: Application
    Filed: January 7, 2020
    Publication date: May 7, 2020
    Inventors: Johan RUNE, Gunnar MILDH
  • Publication number: 20200137600
    Abstract: A wireless device, a network node and a respective method performed thereby for performing measurements for fast setup are provided. The method performed by the wireless device comprises receiving, during a RACH procedure, a “message 4” (Msg 4), which Msg 4 may be a contention resolution, the Msg 4 comprising a trigger for performing a fast measurement. The method also comprises performing a fast measurement on one or more carrier(s) that the wireless device receives. The method may further comprise sending a measurement report to the network node which sent the Msg 4 to the wireless device.
    Type: Application
    Filed: March 22, 2018
    Publication date: April 30, 2020
    Inventors: Mårten ERICSON, Rui FAN, Gunnar MILDH, Osman Nuri Can YILMAZ
  • Patent number: 10638253
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: April 28, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20200128604
    Abstract: A wireless device for resuming a connection in a communication network. The wireless device comprises a communication interface; and one or more processing circuits communicatively connected to the communication interface, the one or more processing circuits comprising at least one processor and memory, the memory containing instructions that, when executed, cause the at least one processor to: send to a network node a request to resume a connection in a communication network; receive a resume response message from the network node, the message comprising an indication to perform a full configuration; and apply the full configuration.
    Type: Application
    Filed: December 19, 2019
    Publication date: April 23, 2020
    Inventors: Oumer TEYEB, Gunnar MILDH
  • Patent number: 10630410
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: April 21, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20200120491
    Abstract: According to an aspect, a wireless device sends, while in an RRC inactive state, a message requesting resumption of an RRC connected state. Upon sending the message, the wireless device starts a timer according to a predetermined value. While the timer is running, the wireless device attempts decryption and integrity check handling for packets subsequently received from the wireless network.
    Type: Application
    Filed: March 26, 2019
    Publication date: April 16, 2020
    Inventors: Gunnar Mildh, Icaro L. J. da Silva
  • Publication number: 20200120489
    Abstract: Embodiments herein relate to a network node for handling a Radio Access Network, (RAN) context information of a wireless device in a cell served by the network node in a wireless communications network. The network node stores the RAN context information of the wireless device when the wireless device is no longer in a connected state in the cell. When the wireless device has returned to a connected state in the cell, the network node receives information indicating a RAN context information from the wireless device. Also, the network node transmits, to the wireless device, information indicating that the wireless device is to use the indicated RAN context information in the cell when the indicated RAN context information is such that it can be reused with the RAN context information of the wireless device previously stored by the network node. Embodiments of the network node are also described.
    Type: Application
    Filed: December 11, 2019
    Publication date: April 16, 2020
    Inventors: Gunnar Mildh, Jari Vikberg, Johan Rune, Icaro Leonardo J. Da Silva, Pontus Wallentin
  • Publication number: 20200120732
    Abstract: Exemplary embodiments include methods and/or procedures performed by a first centralized unit, CU, in a radio access network for configuring a user equipment, UE, to communicate via a plurality of distributed units, DUs. Such embodiments include initiating a first radio resource control, RRC, entity to communicate with the UE via a first DU. Such embodiments also include selecting a second DU to communicate with the UE in a dual-connectivity, DC, configuration with the first DU. Such embodiments also include, based on whether the selected second DU is associated with the first CU, determining whether to initiate a second RRC entity, within the first CU, to communicate with the UE via the second DU. Other embodiments include complementary methods and/or procedures performed by UEs; CUs and UEs configured to perform such methods and/or procedures; and computer-readable media storing instructions corresponding to such methods and/or procedures.
    Type: Application
    Filed: April 12, 2019
    Publication date: April 16, 2020
    Inventors: Oumer Teyeb, Matteo Fiorani, Gunnar Mildh
  • Publication number: 20200120572
    Abstract: A central unit (300A) and a first distributed unit (300B) of a first network node (300) and methods therein, for handling a communication with a wireless device (302) in a wireless network. The central unit (300A) sends an indication to the first distributed unit (300B) to indicate whether a current procedure for the wireless device is an inter-central unit procedure or an intra-central unit procedure. The first distributed unit (300B) is thereby able to decide whether to send information about the communication to the central unit via a user plane or via a control plane, based on a reduced amount of signalling including the indication.
    Type: Application
    Filed: September 21, 2018
    Publication date: April 16, 2020
    Inventors: Matteo Fiorani, Angelo Centonza, Gunnar Mildh, Ioanna Pappa
  • Publication number: 20200120725
    Abstract: Embodiments include methods and/or procedures performed by an integrated access backhaul, IAB, node of a radio access network, RAN, that is associated with a core network, CN. Such embodiments include performing a registration with a CN node, and establishing a secure connection with a RAN node. Such embodiments also include receiving, from the RAN node via the secure connection, configuration information for one or more radio bearers between the IAB node and the RAN node. The radio bearers are adapted for backhaul of control plane information and/or user plane information. Such embodiments also include establishing, with the RAN node via at least one of the radio bearers, one or more Internet Protocol addresses usable by the IAB node. Other embodiments include complementary methods and/or procedures performed by CN nodes and RAN nodes, as well as network nodes configured to perform the various methods and/or procedures.
    Type: Application
    Filed: May 3, 2019
    Publication date: April 16, 2020
    Inventors: Gunnar Mildh, Oumer Teyeb
  • Publication number: 20200120470
    Abstract: Methods, a core network node (104A) and a node (102A) in a radio access network, RAN, (102), for enabling emergency services for wireless devices in the RAN. The core network node (104A) sends (2:1), to the RAN node (102A), information about one or more Access and Mobility Management Functions, AMFs, that support emergency services, to avoid an emergency fallback procedure for wireless devices in the RAN. The RAN node (102A) then selects (2:2) an AMF (104B) that supports emergency services for a wireless device (100) in the RAN, based on the received information. Thereby, the wireless device will have immediate access to emergency services and no delaying emergency fallback procedure is performed which could be critical in an emergency situation.
    Type: Application
    Filed: January 9, 2019
    Publication date: April 16, 2020
    Inventors: Malik Wahaj Arshad, Angelo Centonza, Gunnar Mildh, Paul Schliwa-Bertling
  • Publication number: 20200120741
    Abstract: According to an aspect, a wireless device determines, while in an RRC Inactive state, that a Radio Access Network Notification Area Update, RNAU, is needed. The wireless device further evaluates whether there is any other cause for resuming an RRC connected state, in addition to the need for the RNAU. The wireless device transmits an RRC Resume Request message to the network, in response to the determining. The RRC Resume Request message includes a cause indicator indicating an RNAU as a cause for resuming a RRC Connected state in the event that said evaluating identifies no other cause for resuming the RRC connected state.
    Type: Application
    Filed: February 11, 2019
    Publication date: April 16, 2020
    Inventors: Christofer Lindheimer, Icaro L. J. da Silva, Gunnar Mildh, Paul Schliwa-Bertling
  • Publication number: 20200120477
    Abstract: A wireless device handles area update reports. The wireless device initiates (1502) a radio network area update, RNAU, responsive to detecting that the wireless device has entered a cell not belonging to a radio network area, RNA, configured for the wireless device. The wireless device receives (1504), from the wireless network, a message indicating that the wireless device's attempt to perform the RNAU has been rejected. The message includes or is accompanied by an indication that a wait time value is applicable. Responsive to the message, the wireless device sets (1506) a reject wait timer to the wait time value and performs (1508) the RNAU upon expiry of the reject wait timer. In some embodiments, the wireless device sets a periodic RNAU timer to the wait time value, responsive to the message, and performs the RNAU upon expiry of the reject wait timer and the periodic RNAU timer.
    Type: Application
    Filed: May 7, 2019
    Publication date: April 16, 2020
    Inventors: Gunnar Mildh, Icaro L. J. da Silva
  • Publication number: 20200120742
    Abstract: According to an aspect, a wireless device enters an RRC inactive state from a RRC connected state, in response to a message received from the wireless network. The wireless device subsequently transitions from the RRC inactive state to the RRC connected state and resumes one or more measurements according to one or more measurement configurations stored while the wireless device was in the RRC inactive state.
    Type: Application
    Filed: March 26, 2019
    Publication date: April 16, 2020
    Inventors: Gunnar Mildh, Icaro L. J. da Silva, Henning Wiemann
  • Publication number: 20200120482
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali ASHRAF, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik BERG, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali el Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Niklas Johansson, Martin Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landstrom, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20200120499
    Abstract: A Radio Access Network (RAN) node instructs a wireless device having a connection to the RAN node to transition from a connected Radio Resource Control (RRC) state to an inactive RRC state in which key information supporting the connection, and a further connection to a Core Network (CN) node serving the wireless device, are maintained. Responsive to the wireless device returning to the connected RRC state, the RAN node requests new key material from the CN node, and replaces the key material supporting the connection with the new key material received from the CN node.
    Type: Application
    Filed: June 26, 2018
    Publication date: April 16, 2020
    Inventors: Karl NORRMAN, Gunnar MILDH, Oumer TEYEB, Stefan WAGER
  • Patent number: 10623187
    Abstract: A method (400) of generating a cryptographic checksum for a message M(x) is provided. The method is performed by a communication device, such as a sender or a receiver, and comprises calculating (405) the cryptographic checksum as a first function g of a division of a second function of M(x), ƒ(M(x)), modulo a generator polynomial p(x) of degree n, g(ƒ(M(x))mod p(x)). The generator polynomial is calculated (403) as p(x)=(1?x)·P1(x), and P1(x) is a primitive polynomial of degree n?1. The primitive polynomial is selected (402), based on a first cryptographic key, from the set of primitive polynomials of degree n?1 over a Galois Field. By replacing a standard checksum with a cryptographic checksum, an efficient message authentication is provided. The proposed cryptographic checksum may be used for providing integrity assurance on the message, i.e., for detecting random and intentional message changes, with a known level of security.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: April 14, 2020
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Elena Dubrova, Gunnar Mildh, Mats Näslund, Göran Selander
  • Patent number: 10616764
    Abstract: A method implemented in a user equipment (UE) includes connecting to a WLAN access point. The method further includes constructing a domain name for a packet system network, the domain name including network partition information for the packet system network. The method further includes transmitting, to a DNS server via the WLAN access point, the constructed domain name. The method further includes receiving, from the server, at least one address corresponding to a network node associated with the network partition information.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: April 7, 2020
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Stefan Rommer, Henrik Basilier, Torbjörn Cagenius, Gunnar Mildh, Gunnar Nilsson, Lennart Norell, Göran Rune, Ann-Christine Sander
  • Patent number: 10609749
    Abstract: A wireless device is configured for wirelessly communicating with one or more types of Radio Access Networks (RANs) providing control-plane connectivity to one or both of a first type of core network and a second type of core network. The device configures a Packet Data Convergence Protocol (PDCP) at the device, e.g., at least for initial control-plane signaling, in dependence on whether the device is connected, or connecting, to the first type or the second type of core network. In at least one embodiment, the device configures PDCP for the second type of core network as a default choice, when control-plane connectivity to the second core network is available. In an example arrangement, the RAN types are LTE and 5G New Radio (NR), and the core network types are Evolved Packet Core (EPC) and 5G New Generation Core Network (NGCN).
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: March 31, 2020
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Rui Fan, Gunnar Mildh
  • Publication number: 20200092718
    Abstract: There is provided a method for determining a security context for communication between a wireless device and a target network node at handover. The method comprises obtaining (S1) information representative of the type of Radio Access Technology, also referred to as RAT type, of the target network node, and deriving and/or determining (S2) the security context at least partly based on the information representative of the RAT type.
    Type: Application
    Filed: April 18, 2018
    Publication date: March 19, 2020
    Inventors: Oscar Ohlsson, Gunnar Mildh, Prajwol Kumar Nakarmi