Patents by Inventor Gust H. Bardy

Gust H. Bardy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180353071
    Abstract: A system and method for applying a uniform dynamic gain over cardiac data with the aid of a digital computer is provided. A time series of a plurality of voltage values that comprises a digital representation of a raw electrocardiography (“ECG”) signal recorded by an ambulatory monitor recorder is obtained by an least one computer processor, the time series including segments of noise and segments of non-noise. The segments of non-noise are analyzed by the at least one computer processor and a single gain factor for all of the values in the analyzed non-noise segments is determined by the at least one computer processor based on the analysis. The single gain factor to all of the values in the non-noise segments is applied by the at least one computer processor.
    Type: Application
    Filed: August 20, 2018
    Publication date: December 13, 2018
    Inventors: Gust H. Bardy, Jason Felix, Jon Mikalson Bishay, Ezra M. Dreisbach
  • Publication number: 20180344191
    Abstract: A system and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer is provided. A plurality of R-wave peaks are identified in a set of ECG data and a difference between recording times of successive pairs of the R-wave peaks are calculated as R-R intervals. A heart rate associated with each time difference is determined. An R-R interval plot of the ECG data is formed. The R-R intervals are plotted along an x-axis of the R-R interval plot and the heart rates associated with the R-R intervals are plotted along a y-axis of the R-R interval plot. A diagnostic composite plot is generated, including the R-R interval plot, a near field view of a portion of the ECG data, and an intermediate field view of a different portion of the ECG data for diagnosis of a cardiac event.
    Type: Application
    Filed: August 13, 2018
    Publication date: December 6, 2018
    Inventors: Gust H. Bardy, Ezra M. Dreisbach
  • Publication number: 20180326211
    Abstract: Adaptive methods for initiating charging of the high power capacitors of an implantable medical device for therapy delivery after the patient experiences a non-sustained arrhythmia, and devices that perform such methods. The adaptive methods and devices adjust persistence criteria used to analyze an arrhythmia prior to initiating a charging sequence to deliver therapy. Some embodiments apply a specific sequence of X-out-of-Y criteria, persistence criteria and last even criteria before starting charging for therapy delivery.
    Type: Application
    Filed: July 18, 2018
    Publication date: November 15, 2018
    Applicant: CAMERON HEALTH, INC.
    Inventors: JAY A. WARREN, GUST H. BARDY
  • Patent number: 10123703
    Abstract: Individuals who suffer from certain kinds of medical conditions, particularly conditions that only sporadically exhibit measurable symptoms, can feel helpless in their attempts to secure access to medical care because, at least in part, they are left to the mercy of their condition to present symptoms at the right time to allow diagnosis and treatment. Providing these individuals with ambulatory extended-wear health monitors that record ECG and physiology, preferably available over-the-counter and without health insurance preauthorization, is a first step towards addressing their needs. In addition, these individuals need a way to gain entry into the health care system once a medically-actionable medical condition has been identified. Here, the ECG and physiology is downloaded and evaluated post-monitoring against medical diagnostic criteria.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: November 13, 2018
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Gust H. Bardy, Jon Mikalson Bishay
  • Patent number: 10111601
    Abstract: Physiological monitoring can be provided through a lightweight wearable monitor that includes two components, a flexible extended wear electrode patch and a reusable monitor recorder that removably snaps into a receptacle on the electrode patch. The wearable monitor sits centrally on the patient's chest along the sternum oriented top-to-bottom. The placement of the wearable monitor in a location at the sternal midline, with its unique narrow “hourglass”-like shape, significantly improves the ability of the wearable monitor to cutaneously sense cardiac electrical potential signals, particularly the P-wave and the QRS interval signals indicating ventricular activity in the ECG waveforms. In particular, the ECG electrodes on the electrode patch are tailored to be positioned axially along the midline of the sternum for capturing action potential propagation in an orientation that corresponds to the aVF lead used in a conventional 12-lead ECG that is used to sense positive or upright P-waves.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: October 30, 2018
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Jon Mikalson Bishay, Jason Felix, Gust H. Bardy
  • Publication number: 20180296118
    Abstract: An extended wear electrocardiography patch is provided. A flexible backing is formed of an elongated strip of stretchable material. A circuit is affixed to an outward-facing surface of the flexible backing and includes a pair of circuit traces each originating with one of the ends of the elongated strip. A pair of electrocardiographic electrodes are each electrically coupled to one of the circuit traces and conductively exposed on a contact surface of each end of the elongated strip through an opening. When the flexible backing is at rest, the electrodes are approximately centered over their respective openings on a patient's skin and during bending of the flexible backing, the electrodes slide over at least a portion of the flexible backing while maintaining electrical contact between the electrodes and the patient's skin.
    Type: Application
    Filed: June 25, 2018
    Publication date: October 18, 2018
    Inventors: Jon Mikalson Bishay, Gust H. Bardy, Jason Felix
  • Publication number: 20180249950
    Abstract: A monitor recorder optimized for electrocardiography and respiratory data acquisition and processing is provided.
    Type: Application
    Filed: April 30, 2018
    Publication date: September 6, 2018
    Inventors: Gust H. Bardy, Jon Mikalson Bishay, Jason Felix
  • Publication number: 20180249924
    Abstract: Physiological monitoring can be provided through a lightweight wearable monitor that includes two components, a flexible extended wear electrode patch and a reusable monitor recorder that removably snaps into a receptacle on the electrode patch. The wearable monitor sits centrally (in the midline) on the patient's chest along the sternum oriented top-to-bottom. The placement of the wearable monitor in a location at the sternal midline, with its unique narrow “hourglass”-like shape, significantly improves the ability of the wearable monitor to cutaneously sense cardiac electrical potential signals, particularly the P-wave and, to a lesser extent, the QRS interval signals indicating ventricular activity in the ECG waveforms. Additionally, the monitor recorder includes an ECG sensing circuit that measures raw cutaneous electrical signals and performs signal processing prior to outputting the processed signals for sampling and storage.
    Type: Application
    Filed: April 30, 2018
    Publication date: September 6, 2018
    Inventors: Jason Felix, Jon Mikalson Bishay, Gust H. Bardy
  • Publication number: 20180242867
    Abstract: A system and method for secure physiological data acquisition and storage. An identifier of a physiological monitoring patch is obtained by a programming wand, the patch configured to store the identifier within a cryptographic circuit. A password for accessing physiological monitoring data collected using that patch is generated based on at least a portion of the identifier, the password is encrypted using a secret key, and the encrypted password is loaded into the cryptographic circuit. The key is loaded onto a monitor recorder that couples with the patch and obtains the physiological monitoring data using the patch, wherein the monitor recorder offloads the data together with the identifier and the decoded password. The identifier and the password are reported to a server that stores the offloaded physiological monitoring data using the identifier within a secure database and grants access to the data upon receipt of the decoded password.
    Type: Application
    Filed: April 30, 2018
    Publication date: August 30, 2018
    Inventors: Jason Felix, Ezra M. Dreisbach, Jon Mikalson Bishay, Corey Bailey Williamson, Gust H. Bardy
  • Patent number: 10052022
    Abstract: In one embodiment, a system and method for providing dynamic gain over non-noise electrocardiographic data with the aid of a digital computer are provided. A time series of a plurality of voltage values that comprises a digital representation of a raw electrocardiography (“ECG”) signal recorded by an ambulatory monitor recorder is obtained. One or more segments of the ECG signal is marked as noise, each of the segments including a plurality of the values, based on a difference between a maximum one and a minimum one of the values within that segment. Further segments not marked as noise are analyzed, each of the segments comprising a plurality of the values. A gain factor for all of the values in the analyzed further segments is determined based on the analysis.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: August 21, 2018
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Gust H. Bardy, Jason Felix, Jon Mikalson Bishay, Ezra M. Dreisbach
  • Patent number: 10052487
    Abstract: Adaptive methods for initiating charging of the high power capacitors of an implantable medical device for therapy delivery after the patient experiences a non-sustained arrhythmia, and devices that perform such methods. The adaptive methods and devices adjust persistence criteria used to analyze an arrhythmia prior to initiating a charging sequence to deliver therapy. Some embodiments apply a specific sequence of X-out-of-Y criteria, persistence criteria, and last event criteria before starting charging for therapy delivery.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: August 21, 2018
    Assignee: Cameron Health, Inc.
    Inventors: Jay A. Warren, Gust H. Bardy
  • Patent number: 10045709
    Abstract: A system and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer are provided. Cutaneous action potentials of a patient are recorded as electrocardiogram (ECG) data over a set time period. A set of R-wave peaks is identified within the ECG data and an R-R interval plot is constructed. A difference between recording times of successive pairs of the R-wave peaks in the set is determined. A heart rate associated with each difference is also determined. The pairs of the R-wave peaks and associated heart rate are plotted as the R-R interval plot. A diagnosis of cardiac disorder is facilitated based on patterns of the plotted pairs of the R-wave peaks and the associated heart rates in the R-R interval plot.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: August 14, 2018
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Gust H. Bardy, Ezra M. Dreisbach
  • Publication number: 20180220890
    Abstract: Individuals who suffer from certain kinds of medical conditions, particularly conditions that only sporadically exhibit measurable symptoms, can feel helpless in their attempts to secure access to medical care because, at least in part, they are left to the mercy of their condition to present symptoms at the right time to allow diagnosis and treatment. Providing these individuals with ambulatory extended-wear health monitors that record ECG and physiology, preferably available over-the-counter and without health insurance preauthorization, is a first step towards addressing their needs. In addition, these individuals need a way to gain entry into the health care system once a medically-actionable medical condition has been identified. Here, the ECG and physiology is downloaded and evaluated post-monitoring against medical diagnostic criteria.
    Type: Application
    Filed: April 9, 2018
    Publication date: August 9, 2018
    Inventors: Gust H. Bardy, Jon Mikalson Bishay
  • Publication number: 20180206752
    Abstract: A system and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders is provided. ECG data is obtained via an electrocardiography monitor with a patient button. A press of the patient button is identified within the ECG data. A button window with a segment of data prior to and after the button press is defined within the ECG data. The ECG data is divided into blocks. Noise detection analysis is applied to the data blocks. A classification of noise or valid data is assigned to each data block based on the noise detection analysis. At least one data block that overlaps the button window is assigned the noise classification. The at least one data block is trimmed to align with one of the start and end of the button window. The trimmed blocks assigned with the noise classification are removed from the data.
    Type: Application
    Filed: March 23, 2018
    Publication date: July 26, 2018
    Inventors: Gust H. Bardy, Ezra M. Dreisbach
  • Publication number: 20180177423
    Abstract: An electrocardiography patch is provided. A pair of electrodes are exposed on a contact surface of a flexible backing. A circuit includes a pair of circuit traces and each circuit trace is electrically coupled to one of the electrodes in the pair. A plurality of electrical pads are positioned between the electrodes and above at least a portion of the circuit traces. A pair of the electrical pads interface with the electrodes. A pair of battery leads electrically interface a battery to another pair of the electrical pads.
    Type: Application
    Filed: February 26, 2018
    Publication date: June 28, 2018
    Inventors: Jon Mikalson Bishay, Gust H. Bardy, Jason Felix
  • Patent number: 10004415
    Abstract: An extended wear electrocardiography patch is provided. A flexible backing is formed of an elongated strip of stretchable spunlace material. A layer of stretchable adhesive is applied on at least a portion of a contact surface of the flexible backing, which defines a pair of openings on both ends. A non-stretchable circuit is axially affixed to an outward-facing surface of the flexible backing and has a pair of circuit traces. The flexible backing acts as a buffer between the non-stretchable circuit and the stretchable adhesive and prevents disadhesion of the flexible backing during bending. A pair of electrocardiographic electrodes are electrically coupled to each of the circuit traces. Conductive gel is provided in each of the openings and in electrical contact with the pair of electrocardiographic electrodes as the electrodes shift away from the openings in the flexible backing during the bending.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: June 26, 2018
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Jon Mikalson Bishay, Gust H. Bardy, Jason Felix
  • Patent number: 9993653
    Abstract: In a subcutaneous implantable cardioverter/defibrillator, cardiac arrhythmias are detected to determine necessary therapeutic action. Cardiac signal information is sensed from far field electrodes implanted in a patient. The sensed cardiac signal information is then amplified and filtered. Parameters such as rate, QRS pulse width, cardiac QRS slew rate, amplitude and stability measures of these parameters from the filtered cardiac signal information are measured, processed and integrated to determine if the cardioverter/defibrillator needs to initiate therapeutic action.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: June 12, 2018
    Assignee: CAMERON HEALTH, INC.
    Inventors: Gust H. Bardy, William J. Rissmann, Alan H. Ostroff, Paul J. Erlinger, Venugopal Allavatam
  • Patent number: 9968796
    Abstract: The present invention is directed toward a detection architecture for use in implantable cardiac rhythm devices. The detection architecture of the present invention provides methods and devices for discriminating between arrhythmias. Moreover, by exploiting the enhanced specificity in the origin of the identified arrhythmia, the detection architecture can better discriminate between rhythms appropriate for device therapy and those that are not.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: May 15, 2018
    Assignee: Cameron Health, Inc.
    Inventors: Alan H. Ostroff, Jay A. Warren, Gust H. Bardy
  • Patent number: 9955885
    Abstract: A system and method for secure physiological data processing and delivery are provided. A log of identifiers of physiological monitoring patches and of passwords is maintained in a secure database. Physiological monitoring data obtained using one of the patches is received by at least one server together with the identifier and the password associated with that patch. The received identifier and password are compared with the identifiers and passwords stored in the log. The received physiological monitoring data is stored in electronic medical records associated with the matching identifier. The password and the identifier associated with the physiological monitoring data are received from a user device over the data communications network. The received password and identifier are compared to the password and the identifier associated with the electrical medical records. The electronic medical records are provided by to the user device over the data communication network based on the comparison.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: May 1, 2018
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Jason Felix, Ezra M. Dreisbach, Jon Mikalson Bishay, Corey Bailey Williamson, Gust H. Bardy
  • Patent number: D831833
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: October 23, 2018
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Jon Mikalson Bishay, Gust H. Bardy