Patents by Inventor Gust H. Bardy

Gust H. Bardy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170095153
    Abstract: Individuals who suffer from certain kinds of medical conditions, particularly conditions that only sporadically exhibit measurable symptoms, can feel helpless in their attempts to secure access to medical care because, at least in part, they are left to the mercy of their condition to present symptoms at the right time to allow diagnosis and treatment. Providing these individuals with ambulatory extended-wear health monitors that record ECG and physiology, preferably available over-the-counter and without health insurance preauthorization, is a first step towards addressing their needs. In addition, these individuals need a way to gain entry into the health care system once a medically-actionable medical condition has been identified. Here, the ECG and physiology is downloaded and evaluated post-monitoring against medical diagnostic criteria.
    Type: Application
    Filed: November 28, 2016
    Publication date: April 6, 2017
    Inventors: Gust H. Bardy, Jon Mikalson Bishay
  • Publication number: 20170095672
    Abstract: The present invention is directed toward a detection architecture for use in implantable cardiac rhythm devices. The detection architecture of the present invention provides methods and devices for discriminating between arrhythmias. Moreover, by exploiting the enhanced specificity in the origin of the identified arrhythmia, the detection architecture can better discriminate between rhythms appropriate for device therapy and those that are not.
    Type: Application
    Filed: December 19, 2016
    Publication date: April 6, 2017
    Applicant: CAMERON HEALTH, INC.
    Inventors: Alan H. Ostroff, Jay A. Warren, Gust H. Bardy
  • Publication number: 20170056681
    Abstract: In a subcutaneous implantable cardioverter/defibrillator, cardiac arrhythmias are detected to determine necessary therapeutic action. Cardiac signal information is sensed from far field electrodes implanted in a patient. The sensed cardiac signal information is then amplified and filtered. Parameters such as rate, QRS pulse width, cardiac QRS slew rate, amplitude and stability measures of these parameters from the filtered cardiac signal information are measured, processed and integrated to determine if the cardioverter/defibrillator needs to initiate therapeutic action.
    Type: Application
    Filed: November 14, 2016
    Publication date: March 2, 2017
    Applicant: CAMERON HEALTH, INC.
    Inventors: Gust H. Bardy, William J. Rissmann, Alan H. Ostroff, Paul J. Erlinger, Venugopal Allavatam
  • Patent number: 9555259
    Abstract: The present invention is directed toward a detection architecture for use in implantable cardiac rhythm devices. The detection architecture of the present invention provides methods and devices for discriminating between arrhythmias. Moreover, by exploiting the enhanced specificity in the origin of the identified arrhythmia, the detection architecture can better discriminate between rhythms appropriate for device therapy and those that are not.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: January 31, 2017
    Assignee: CAMERON HEALTH INC.
    Inventors: Alan H. Ostroff, Jay A. Warren, Gust H. Bardy
  • Patent number: 9554715
    Abstract: In one embodiment, ECG data collected during the long-term monitoring are compressed through a two-step compression algorithm executed by an electrocardiography monitor. Minimum amplitude signals may become indistinguishable from noise if overly inclusive encoding is employed in which voltage ranges are set too wide. The resulting ECG signal will appear “choppy” and uneven with an abrupt slope. The encoding used in the first stage of compression can be dynamically rescaled on-the-fly when the granularity of the encoding is too coarse. In a further embodiment, offloaded ECG signals are automatically gained as appropriate on a recording-by-recording basis to preserve the amplitude relationship between the signals. Raw decompressed ECG signals are filtered for noise content and any gaps in the signals are bridged. An appropriate signal gain is determined based on a statistical evaluation of peak-to-peak voltage (or other indicator) to land as many ECG waveforms within a desired range of display.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: January 31, 2017
    Assignee: BARDY DIAGNOSTICS, INC.
    Inventors: Gust H. Bardy, Jason Felix, Jon Mikalson Bishay, Ezra M. Dreisbach
  • Patent number: 9545204
    Abstract: Physiological monitoring can be provided through a wearable monitor that includes a flexible extended wear electrode patch and a removable reusable monitor recorder. The wearable monitor sits centrally on the patient's chest along the sternum, which significantly improves the ability to sense cutaneously cardiac electric signals, particularly those generated by the atrium. The electrode patch is shaped to fit comfortably and conformal to the contours of the chest approximately centered on the sternal midline. To counter the dislodgment due to compressional and torsional forces, non-irritating adhesive is provided on the underside, or contact, surface of the electrode patch, but only on the distal and proximal ends.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: January 17, 2017
    Assignee: BARDY DIAGNOSTICS, INC.
    Inventors: Jon Mikalson Bishay, Gust H. Bardy, Jason Felix
  • Patent number: 9545228
    Abstract: Physiological monitoring can be provided through a wearable monitor that includes two components, a flexible extended wear electrode patch and a removable reusable monitor recorder. The wearable monitor sits centrally (in the midline) on the patient's chest along the sternum oriented top-to-bottom. The placement of the wearable monitor in a location at the sternal midline (or immediately to either side of the sternum) benefits extended wear by removing the requirement that ECG electrodes be continually placed in the same spots on the skin throughout the monitoring period. Instead, the patient can place an electrode patch anywhere within the general region of the sternum. Power is provided through a battery provided on the electrode patch, which avoids having to open the monitor recorder's housing for battery replacement. The patch further includes sensors for monitoring patient's air flow and respiratory measures contemporaneously with the ECG monitoring.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: January 17, 2017
    Assignee: BARDY DIAGNOSTICS, INC.
    Inventors: Gust H. Bardy, Jon Mikalson Bishay, Jason Felix
  • Patent number: 9526456
    Abstract: A system and method for evaluating a patient status from sampled physiometry for use in heart failure assessment is presented. Physiological measures, including at least one of direct measures regularly recorded on a substantially continuous basis by a medical device and measures derived from the direct measures are stored. At least one of those of the physiological measures, which relate to a same type of physiometry, and those of the physiological measures, which relate to a different type of physiometry are sampled. A status is determined for a patient through analysis of those sampled measures assembled from a plurality of recordation points. The sampled measures are evaluated. Trends that are indicated by the patient status, including one of a status quo and a change, which might affect cardiac performance of the patient, are identified. Each trend is compared to worsening heart failure indications to generate a notification of parameter violations.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: December 27, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Gust H. Bardy
  • Publication number: 20160367164
    Abstract: A remotely-interfaceable extended wear electrocardiography and physiological sensor monitor recorder is provided. A sealed housing forms on a bottom surface a cavity shaped to accommodate an upward projection of a battery compartment formed on a non-conductive receptacle of a disposable extended wear electrode patch and includes a set of electrical contacts that protrude from the bottom surface and are arranged in alignment with electrical pads provided on the non-conductive receptacle. Electronic circuitry is provided within the sealed housing and includes an externally-powered micro-controller operable to execute under micro programmable control. An electrocardiographic front end circuit is electrically interfaced to the micro-controller. A wireless transceiver electrically interfaces with the micro-controller and externally-powered flash memory is electrically interfaced with the micro-controller and operable to store samples of the electrocardiographic signals.
    Type: Application
    Filed: September 2, 2016
    Publication date: December 22, 2016
    Inventors: Jason Felix, Jon Mikalson Bishay, Gust H. Bardy
  • Publication number: 20160367163
    Abstract: An extended wear electrocardiography patch is provided. A flexible backing is formed of an elongated strip of stretchable spunlace material. A layer of stretchable adhesive is applied on at least a portion of a contact surface of the flexible backing, which defines a pair of openings on both ends. A non-stretchable circuit is axially affixed to an outward-facing surface of the flexible backing and has a pair of circuit traces. The flexible backing acts as a buffer between the non-stretchable circuit and the stretchable adhesive and prevents disadhesion of the flexible backing during bending. A pair of electrocardiographic electrodes are electrically coupled to each of the circuit traces. Conductive gel is provided in each of the openings and in electrical contact with the pair of electrocardiographic electrodes as the electrodes shift away from the openings in the flexible backing during the bending.
    Type: Application
    Filed: September 2, 2016
    Publication date: December 22, 2016
    Inventors: Jon Mikalson Bishay, Gust H. Bardy, Jason Felix
  • Patent number: 9522283
    Abstract: In a subcutaneous implantable cardioverter/defibrillator, cardiac arrhythmias are detected to determine necessary therapeutic action. Cardiac signal information is sensed from far field electrodes implanted in a patient. The sensed cardiac signal information is then amplified and filtered. Parameters such as rate, QRS pulse width, cardiac QRS slew rate, amplitude and stability measures of these parameters from the filtered cardiac signal information are measured, processed and integrated to determine if the cardioverter/defibrillator needs to initiate therapeutic action.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: December 20, 2016
    Assignee: CAMERON HEALTH INC.
    Inventors: Gust H. Bardy, William J. Rissmann, Alan H. Ostroff, Paul J. Erlinger, Venugopal Allavatam
  • Publication number: 20160345854
    Abstract: A system and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer are provided. Cutaneous action potentials of a patient are recorded as electrocardiogram (ECG) data over a set time period. A set of R-wave peaks is identified within the ECG data and an R-R interval plot is constructed. A difference between recording times of successive pairs of the R-wave peaks in the set is determined. A heart rate associated with each difference is also determined. The pairs of the R-wave peaks and associated heart rate are plotted as the R-R interval plot. A diagnosis of cardiac disorder is facilitated based on patterns of the plotted pairs of the R-wave peaks and the associated heart rates in the R-R interval plot.
    Type: Application
    Filed: August 8, 2016
    Publication date: December 1, 2016
    Inventors: Gust H. Bardy, Ezra M. Dreisbach
  • Patent number: 9504423
    Abstract: Individuals who suffer from certain kinds of medical conditions, particularly conditions that only sporadically exhibit measurable symptoms, can feel helpless in their attempts to secure access to medical care because, at least in part, they are left to the mercy of their condition to present symptoms at the right time to allow diagnosis and treatment. Providing these individuals with ambulatory extended-wear health monitors that record ECG and physiology, preferably available over-the-counter and without health insurance preauthorization, is a first step towards addressing their needs. In addition, these individuals need a way to gain entry into the health care system once a medically-actionable medical condition has been identified. Here, the ECG and physiology is downloaded and evaluated post-monitoring against medical diagnostic criteria.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: November 29, 2016
    Assignee: BARDY DIAGNOSTICS, INC.
    Inventors: Gust H. Bardy, Jon Mikalson Bishay
  • Publication number: 20160296166
    Abstract: Physiological monitoring can be provided through a wearable monitor that includes two components, a flexible extended wear electrode patch and a removable reusable monitor recorder. The wearable monitor sits centrally (in the midline) on the patient's chest along the sternum oriented top-to-bottom. The placement of the wearable monitor in a location at the sternal midline (or immediately to either side of the sternum) benefits extended wear by removing the requirement that ECG electrodes be continually placed in the same spots on the skin throughout the monitoring period. Instead, the patient can place an electrode patch anywhere within the general region of the sternum. Power is provided through a battery provided on the electrode patch, which avoids having to open the monitor recorder's housing for battery replacement. The patch further includes sensors for monitoring patient's air flow and respiratory measures contemporaneously with the ECG monitoring.
    Type: Application
    Filed: June 13, 2016
    Publication date: October 13, 2016
    Inventors: Gust H. Bardy, Jon Mikalson Bishay, Jason Felix
  • Publication number: 20160278701
    Abstract: Physiological monitoring can be provided through a wearable monitor that includes a flexible extended wear electrode patch and a removable reusable monitor recorder. The wearable monitor sits centrally on the patient's chest along the sternum, which significantly improves the ability to sense cutaneously cardiac electric signals, particularly those generated by the atrium. The electrode patch is shaped to fit comfortably and conformal to the contours of the chest approximately centered on the sternal midline. The electrode patch is made from a type of stretchable spunlace fabric. To counter patient bending motions and prevent disadhesion of the electrode patch, the outward-facing aspect of the backing, to which a (non-stretchable) flexible circuit is fixedly attached, stretches at a different rate than the backing's skin-facing aspect, where a skin adhesive removably affixes the electrode patch to the skin.
    Type: Application
    Filed: June 10, 2015
    Publication date: September 29, 2016
    Inventors: Jon Mikalson Bishay, Gust H. Bardy, Jason Felix
  • Publication number: 20160278658
    Abstract: A wearable electrocardiography monitoring ensemble is provided, which includes a garment made of a compressible and elastomeric material. The garment is wearable about an upper region of the torso and further includes an internal structure forming a compressive bias circumferential to the torso. The ensemble also includes an electrode assembly provided on an inside surface of the garment on an underside of the internal structure. The electrode assembly has a pair of electrocardiography electrodes, a pair of terminated electrical connections that are each coupled to one of the electrocardiography electrodes, and a backing to which the electrocardiography electrodes are affixed.
    Type: Application
    Filed: June 9, 2015
    Publication date: September 29, 2016
    Inventors: Gust H. Bardy, Mark Handfelt, Jon Mikalson Bishay, Jason Felix
  • Publication number: 20160262646
    Abstract: In one embodiment, ECG data collected during the long-term monitoring are compressed through a two-step compression algorithm executed by an electrocardiography monitor. Minimum amplitude signals may become indistinguishable from noise if overly inclusive encoding is employed in which voltage ranges are set too wide. The resulting ECG signal will appear “choppy” and uneven with an abrupt slope. The encoding used in the first stage of compression can be dynamically rescaled on-the-fly when the granularity of the encoding is too coarse. In a further embodiment, offloaded ECG signals are automatically gained as appropriate on a recording-by-recording basis to preserve the amplitude relationship between the signals. Raw decompressed ECG signals are filtered for noise content and any gaps in the signals are bridged. An appropriate signal gain is determined based on a statistical evaluation of peak-to-peak voltage (or other indicator) to land as many ECG waveforms within a desired range of display.
    Type: Application
    Filed: May 23, 2016
    Publication date: September 15, 2016
    Inventors: Gust H. Bardy, Jason Felix, Jon Mikalson Bishay, Ezra M. Dreisbach
  • Patent number: 9433367
    Abstract: Physiological monitoring can be provided through a wearable monitor that includes two components, a flexible extended wear electrode patch and a removable reusable monitor recorder. The wearable monitor sits centrally on the patient's chest along the sternum oriented top-to-bottom. The placement of the wearable monitor in a location at the sternal midline (or immediately to either side of the sternum) benefits extended wear by removing the requirement that ECG electrodes be continually placed in the same spots on the skin throughout the monitoring period. The wearable monitor can interoperate wirelessly with other physiology and activity sensors and mobile communications devices, to download monitoring data either in real-time or in batches. The monitor recorder can provide data or other information to, or receive data or information from, an interfacing physiology or activity sensor, or mobile communications devices for relay to a further device, such as a server, analysis, or other purpose.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: September 6, 2016
    Assignee: BARDY DIAGNOSTICS, INC.
    Inventors: Jason Felix, Jon Mikalson Bishay, Gust H. Bardy
  • Patent number: 9433380
    Abstract: Physiological monitoring can be provided through a wearable monitor that includes a flexible extended wear electrode patch and a removable reusable monitor recorder. The wearable monitor sits centrally on the patient's chest along the sternum, which significantly improves the ability to sense cutaneously cardiac electric signals, particularly those generated by the atrium. The electrode patch is shaped to fit comfortably and conformal to the contours of the chest approximately centered on the sternal midline. The electrode patch is made from a type of stretchable spunlace fabric. To counter patient bending motions and prevent disadhesion of the electrode patch, the outward-facing aspect of the backing, to which a (non-stretchable) flexible circuit is fixedly attached, stretches at a different rate than the backing's skin-facing aspect, where a skin adhesive removably affixes the electrode patch to the skin.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: September 6, 2016
    Assignee: BARDY DIAGNOSTICS, INC.
    Inventors: Jon Mikalson Bishay, Gust H. Bardy, Jason Felix
  • Patent number: D766447
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: September 13, 2016
    Assignee: BARDY DIAGNOSTICS, INC.
    Inventors: Jon Mikalson Bishay, Gust H. Bardy