Patents by Inventor Gust H. Bardy

Gust H. Bardy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160235998
    Abstract: The implantable cardiac treatment system of the present invention is capable of choosing the most appropriate electrode vector to sense within a particular patient. In certain embodiments, the implantable cardiac treatment system determines the most appropriate electrode vector for continuous sensing based on which electrode vector results in the greatest signal amplitude, or some other useful metric such as signal-to-noise ratio (SNR). The electrode vector possessing the highest quality as measured using the metric is then set as the default electrode vector for sensing. Additionally, in certain embodiments of the present invention, a next alternative electrode vector is selected based on being generally orthogonal to the default electrode vector. In yet other embodiments of the present invention, the next alternative electrode vector is selected based on possessing the next highest quality metric after the default electrode vector.
    Type: Application
    Filed: April 26, 2016
    Publication date: August 18, 2016
    Applicant: CAMERON HEALTH INC.
    Inventors: Jay A. Warren, Gust H. Bardy
  • Patent number: 9408551
    Abstract: R-R interval data is presented in a format that includes relevant near field and far field ECG data. The near field view provides a “pinpoint” classical view at classical recording speed. The far field view that provides an “intermediate” lower resolution, pre- and post-event view. Both ECG data views are temporally keyed to the extended duration R-R interval data that is scaled non-linearly to maximize the visual differentiation for frequently-occurring heart rate ranges. All three views are presented simultaneously. The durations of the pinpoint view, the intermediate view, and the R-R interval plot are flexible and adjustable. Diagnostically relevant cardiac events can be identified and located to allow pre- and post-event heart rhythm data. The pinpoint “snapshot” and intermediate views of ECG data with the extended term R-R interval data comparatively depicts heart rate context and patterns of behavior prior to and after a clinically meaningful arrhythmia or patient concern.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: August 9, 2016
    Assignee: BARDY DIAGNOSTICS, INC.
    Inventors: Gust H. Bardy, Ezra M. Dreisbach
  • Publication number: 20160213263
    Abstract: Physiological monitoring can be provided through a syncope sensor imbedded into an electrocardiography monitor, which correlates syncope events and electrocardiographic data. Physiological monitoring can be provided through a lightweight wearable monitor that includes two components, a flexible extended-wear electrode patch and a reusable monitor recorder that removably snaps into a receptacle on the electrode patch. The wearable monitor sits centrally on the patient's chest at the sternal midline and includes a unique narrow “hourglass”-like shape, significantly improving the ability of the monitor to cutaneously sense cardiac electrical potential signals, particularly the P-wave and QRS interval signals, which indicate ventricular activity in electrocardiographic waveforms.
    Type: Application
    Filed: April 10, 2015
    Publication date: July 28, 2016
    Inventors: Jason Felix, Jon Mikalson Bishay, Gust H. Bardy
  • Publication number: 20160192853
    Abstract: R-R interval data is presented in a format that includes relevant near field and far field ECG data. The near field view provides a “pinpoint” classical view at classical recording speed. The far field view that provides an “intermediate” lower resolution, pre- and post-event view. Both ECG data views are temporally keyed to the extended duration R-R interval data that is scaled non-linearly to maximize the visual differentiation for frequently-occurring heart rate ranges. All three views are presented simultaneously. The durations of the pinpoint view, the intermediate view, and the R-R interval plot are flexible and adjustable. Diagnostically relevant cardiac events can be identified and located to allow pre- and post-event heart rhythm data. The pinpoint “snapshot” and intermediate views of ECG data with the extended term R-R interval data comparatively depicts heart rate context and patterns of behavior prior to and after a clinically meaningful arrhythmia or patient concern.
    Type: Application
    Filed: March 10, 2016
    Publication date: July 7, 2016
    Inventors: Gust H. Bardy, Ezra M. Dreisbach
  • Patent number: 9364155
    Abstract: Physiological monitoring can be provided through a wearable monitor that includes two components, a flexible extended wear electrode patch and a removable reusable monitor recorder. The wearable monitor sits centrally (in the midline) on the patient's chest along the sternum oriented top-to-bottom. The placement of the wearable monitor in a location at the sternal midline (or immediately to either side of the sternum) benefits extended wear by removing the requirement that ECG electrodes be continually placed in the same spots on the skin throughout the monitoring period. Instead, the patient can place an electrode patch anywhere within the general region of the sternum. Power is provided through a battery provided on the electrode patch, which avoids having to open the monitor recorder's housing for battery replacement. The monitor further includes sensors for monitoring patient's air flow and respiratory measures contemporaneously with the ECG monitoring.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: June 14, 2016
    Assignee: BARDY DIAGNOSTICS, INC.
    Inventors: Gust H. Bardy, Jon Mikalson Bishay, Jason Felix
  • Patent number: 9345414
    Abstract: In one embodiment, ECG data collected during the long-term monitoring are compressed through a two-step compression algorithm executed by an electrocardiography monitor. Minimum amplitude signals may become indistinguishable from noise if overly inclusive encoding is employed in which voltage ranges are set too wide. The resulting ECG signal will appear “choppy” and uneven with an abrupt slope. The encoding used in the first stage of compression can be dynamically rescaled on-the-fly when the granularity of the encoding is too coarse. In a further embodiment, offloaded ECG signals are automatically gained as appropriate on a recording-by-recording basis to preserve the amplitude relationship between the signals. Raw decompressed ECG signals are filtered for noise content and any gaps in the signals are bridged. The signal is then gained based on a statistical evaluation of peak-to-peak voltage (or other indicator) to land as many ECG waveforms within a desired range of display.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: May 24, 2016
    Assignee: BARDY DIAGNOSTICS, INC.
    Inventors: Gust H. Bardy, Jason Felix, Jon Mikalson Bishay, Ezra M. Dreisbach
  • Patent number: 9345899
    Abstract: The implantable cardiac treatment system of the present invention is capable of choosing the most appropriate electrode vector to sense within a particular patient. In certain embodiments, the implantable cardiac treatment system determines the most appropriate electrode vector for continuous sensing based on which electrode vector results in the greatest signal amplitude, or some other useful metric such as signal-to-noise ratio (SNR). The electrode vector possessing the highest quality as measured using the metric is then set as the default electrode vector for sensing. Additionally, in certain embodiments of the present invention, a next alternative electrode vector is selected based on being generally orthogonal to the default electrode vector. In yet other embodiments of the present invention, the next alternative electrode vector is selected based on possessing the next highest quality metric after the default electrode vector.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: May 24, 2016
    Assignee: CAMERON HEALTH, INC.
    Inventors: Jay A. Warren, Gust H. Bardy
  • Publication number: 20160007877
    Abstract: Physiological monitoring can be provided through a lightweight wearable monitor that includes two components, a flexible extended wear electrode patch and a reusable monitor recorder that removably snaps into a receptacle on the electrode patch. The wearable monitor sits centrally (in the midline) on the patient's chest along the sternum oriented top-to-bottom. The placement of the wearable monitor in a location at the sternal midline, with its unique narrow “hourglass”-like shape, significantly improves the ability of the wearable monitor to cutaneously sense cardiac electrical potential signals, particularly the P-wave and, to a lesser extent, the QRS interval signals indicating ventricular activity in the ECG waveforms.
    Type: Application
    Filed: September 16, 2014
    Publication date: January 14, 2016
    Inventors: Jason Felix, Jon Mikalson Bishay, Gust H. Bardy
  • Publication number: 20160007872
    Abstract: Physiological monitoring can be provided through a lightweight wearable monitor that includes two components, a flexible extended wear electrode patch and a reusable monitor recorder that removably snaps into a receptacle on the electrode patch. The wearable monitor sits centrally on the patient's chest along the sternum oriented top-to-bottom. The placement of the wearable monitor in a location at the sternal midline, with its unique narrow “hourglass”-like shape, significantly improves the ability of the wearable monitor to cutaneously sense cardiac electrical potential signals, particularly the P-wave and the QRS interval signals indicating ventricular activity in the ECG waveforms. In particular, the ECG electrodes on the electrode patch are tailored to be positioned axially along the midline of the sternum for capturing action potential propagation in an orientation that corresponds to the aVF lead used in a conventional 12-lead ECG that is used to sense positive or upright P-waves.
    Type: Application
    Filed: September 16, 2014
    Publication date: January 14, 2016
    Inventors: Jon Mikalson Bishay, Jason Felix, Gust H. Bardy
  • Publication number: 20160007875
    Abstract: Physiological monitoring can be provided through a lightweight wearable monitor that includes two components, a flexible extended wear electrode patch and a reusable monitor recorder that removably snaps into a receptacle on the electrode patch. The wearable monitor sits centrally on the patient's chest along the sternum oriented top-to-bottom. The placement of the wearable monitor in a location at the sternal midline, with its unique narrow “hourglass”-like shape, significantly improves the ability of the wearable monitor to cutaneously sense cardiac electrical potential signals, particularly the P-wave and the QRS interval signals indicating ventricular activity in the ECG waveforms. In particular, the ECG electrodes on the electrode patch are tailored to be positioned axially along the midline of the sternum for capturing action potential propagation in an orientation that corresponds to the aVF lead used in a conventional 12-lead ECG that is used to sense positive or upright P-waves.
    Type: Application
    Filed: September 16, 2014
    Publication date: January 14, 2016
    Inventors: Jason Felix, Jon Mikalson Bishay, Gust H. Bardy
  • Publication number: 20160001090
    Abstract: The present invention is directed toward a detection architecture for use in implantable cardiac rhythm devices. The detection architecture of the present invention provides methods and devices for discriminating between arrhythmias. Moreover, by exploiting the enhanced specificity in the origin of the identified arrhythmia, the detection architecture can better discriminate between rhythms appropriate for device therapy and those that are not.
    Type: Application
    Filed: September 15, 2015
    Publication date: January 7, 2016
    Applicant: CAMERON HEALTH, INC.
    Inventors: Alan H. Ostroff, Jay A. Warren, Gust H. Bardy
  • Publication number: 20150360040
    Abstract: In a subcutaneous implantable cardioverter/defibrillator, cardiac arrhythmias are detected to determine necessary therapeutic action. Cardiac signal information is sensed from far field electrodes implanted in a patient. The sensed cardiac signal information is then amplified and filtered. Parameters such as rate, QRS pulse width, cardiac QRS slew rate, amplitude and stability measures of these parameters from the filtered cardiac signal information are measured, processed and integrated to determine if the cardioverter/defibrillator needs to initiate therapeutic action.
    Type: Application
    Filed: August 27, 2015
    Publication date: December 17, 2015
    Applicant: CAMERON HEALTH, INC.
    Inventors: Gust H. Bardy, William J. Rissmann, Alan H. Ostroff, Paul J. Erlinger, Venugopal Allavatam
  • Patent number: 9155485
    Abstract: The present invention is directed toward a detection architecture for use in implantable cardiac rhythm devices. The detection architecture of the present invention provides methods and devices for discriminating between arrhythmias. Moreover, by exploiting the enhanced specificity in the origin of the identified arrhythmia, the detection architecture can better discriminate between rhythms appropriate for device therapy and those that are not.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: October 13, 2015
    Assignee: CAMERON HEALTH, INC.
    Inventors: Alan H. Ostroff, Jay A. Warren, Gust H. Bardy
  • Patent number: 9144683
    Abstract: A power supply for an implantable cardioverter-defibrillator for subcutaneous positioning between the third rib and the twelfth rib and using a lead system that does not directly contact a patient's heart or reside in the intrathoracic blood vessels and for providing anti-bradycardia pacing energy to the heart, comprising a capacitor subsystem for storing the anti-bradycardia pacing energy for delivery to the patient's heart; and a battery subsystem electrically coupled to the capacitor subsystem for providing the anti-bradycardia pacing energy to the capacitor subsystem.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: September 29, 2015
    Assignee: CAMERON HEALTH, INC.
    Inventors: Gust H. Bardy, Riccardo Cappato, William J. Rissmann
  • Patent number: 9138589
    Abstract: In a subcutaneous implantable cardioverter/defibrillator, cardiac arrhythmias are detected to determine necessary therapeutic action. Cardiac signal information is sensed from far field electrodes implanted in a patient. The sensed cardiac signal information is then amplified and filtered. Parameters such as rate, QRS pulse width, cardiac QRS slew rate, amplitude and stability measures of these parameters from the filtered cardiac signal information are measured, processed and integrated to determine if the cardioverter/defibrillator needs to initiate therapeutic action.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: September 22, 2015
    Assignee: CAMERON HEALTH, INC.
    Inventors: Gust H. Bardy, William J. Rissmann, Alan H. Ostroff, Paul J. Erlinger, Venugopal Allavatam
  • Patent number: 9037477
    Abstract: A computer-implemented method for evaluating ambulatory electrocardiographic (ECG) monitoring of cardiac rhythm disorders is provided. A patient is registered online and medical records for the patient are assembled. An ambulatory ECG monitor that includes leadless integrated sensing electrodes independently suspended from a flexible housing, is registered to the patient. An electrocardiogram is retrieved from the recording circuitry. The electrocardiogram and the medical records are evaluated against diagnostic criteria. Upon making a finding when the diagnostic criteria is met, the patient is referred to a cardiac rhythm specialist online, which includes sending the cardiac rhythm abnormality finding. As a result, both physicians and patients enjoy an ease-of-use not found with conventional ambulatory ECG monitors.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: May 19, 2015
    Assignee: CARDIAC SCIENCE CORPORATION
    Inventors: Gust H. Bardy, Jon Mikalson Bishay
  • Publication number: 20150105680
    Abstract: The present invention is directed toward a detection architecture for use in implantable cardiac rhythm devices. The detection architecture of the present invention provides methods and devices for discriminating between arrhythmias. Moreover, by exploiting the enhanced specificity in the origin of the identified arrhythmia, the detection architecture can better discriminate between rhythms appropriate for device therapy and those that are not.
    Type: Application
    Filed: December 17, 2014
    Publication date: April 16, 2015
    Inventors: Alan H. Ostroff, Jay A. Warren, Gust H. Bardy
  • Publication number: 20150087923
    Abstract: Physiological monitoring can be provided through an actigraphy sensor imbedded into an electrocardiography monitor, which correlates movement and electrocardiographic data. Physiological monitoring can be provided through a wearable monitor that includes two components, a flexible extended wear electrode patch and a removable reusable monitor recorder. The wearable monitor sits centrally on the patient's chest along the sternum. The patient can place an electrode patch anywhere within the general region of the sternum. The occurrence of actigraphy events are monitored by the monitor recorder through an actigraphy sensor. Actigraphy becomes a recordable actigraphy event occurrence when the movement of the wearable monitor and, therefore, the patient, exceeds a certain criteria threshold of acceleration or deceleration as detected by the actigraphy sensor.
    Type: Application
    Filed: November 16, 2013
    Publication date: March 26, 2015
    Inventors: Gust H. Bardy, Jason Felix, Jon Mikalson Bishey
  • Publication number: 20150087950
    Abstract: Physiological monitoring can be provided through a wearable monitor that includes two components, a flexible extended wear electrode patch and a removable reusable monitor recorder. The wearable monitor sits centrally (in the midline) on the patient's chest along the sternum oriented top-to-bottom. The placement of the wearable monitor in a location at the sternal midline (or immediately to either side of the sternum) benefits extended wear by removing the requirement that ECG electrodes be continually placed in the same spots on the skin throughout the monitoring period. Instead, the patient can place an electrode patch anywhere within the general region of the sternum. Ensuring that the quality level of ECG recording remains constant over an extended period of time is provided through self-authentication of electrode patches. The monitor recorder implements a challenge response scheme upon being connected to an electrode patch. Failing self-authentication, the monitor recorder signals an error condition.
    Type: Application
    Filed: November 15, 2013
    Publication date: March 26, 2015
    Inventors: Jason Felix, Gust H. Bardy, Jon Mikalson Bishay
  • Patent number: D744659
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: December 1, 2015
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Jon Mikalson Bishay, Gust H. Bardy