Patents by Inventor H. Montgomery Manning

H. Montgomery Manning has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7094636
    Abstract: A method of forming a conductive line includes forming conductive material received over a semiconductor substrate into a line having opposing sidewalls. Insulative material is deposited over the line, and is planarized. An insulating spacer forming layer is deposited over the line and the planarized insulative material. The spacer forming layer is anisotropically etched form a pair of insulative spacers over the opposing line sidewalls with the insulative material being received between at least one of the sidewalls and one insulative spacer formed thereover. The insulative material as so received has a maximum lateral thickness which is greater than a maximum lateral thickness of the one sidewall spacer.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: August 22, 2006
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 7015113
    Abstract: The invention includes methods of forming trench isolation regions. In one implementation, a masking material is formed over a semiconductor substrate. The masking material comprises at least one of tungsten, titanium nitride and amorphous carbon. An opening is formed through the masking material and into the semiconductor substrate effective to form an isolation trench within semiconductive material of the semiconductor substrate. A trench isolation material is formed within the isolation trench and over the masking material outside of the trench effective to overfill the isolation trench. The trench isolation material is polished at least to an outermost surface of the at least one of tungsten, titanium nitride and amorphous carbon of the masking material. The at least one of tungsten, titanium nitride and amorphous carbon is/are etched from the substrate. Other implementations and aspects are contemplated.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: March 21, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Garo J. Derderian, H. Montgomery Manning
  • Patent number: 6984549
    Abstract: The invention includes semiconductor fuse arrangements containing an electrically conductive plate over and in electrical contact with a plurality of electrically conductive links. Each of the links contacts the electrically conductive plate as a separate region relative to the other links, and the region where a link makes contact to the electrically conductive plate is a fuse. The invention also includes methods of forming semiconductor fuse arrangements.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: January 10, 2006
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 6982203
    Abstract: A method of fabricating integrated circuitry includes forming a conductive line having opposing sidewalls over a semiconductor substrate, and having an outer etch stop cap. An insulating layer is deposited over the substrate and the line. The insulating layer is planarize polished using the outer etch stop cap as an etch stop. After the planarize polishing, the insulating layer is etched proximate the line alonge at least a portion of at least one sidewall of the line. After the etching, an insulating spacer forming layer is deposited over the substrate and the line, and it is anisotropically etched to form an insulating sidewall spacer along said portion of the at least one sidewall.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: January 3, 2006
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Publication number: 20050269648
    Abstract: This invention includes gated field effect devices, and methods of forming gated field effect devices. In one implementation, a gated field effect device includes a pair of source/drain regions having a channel region therebetween. A gate is received proximate the channel region between the source/drain regions. The gate has a gate width between the source/drain regions. A gate dielectric is received intermediate the channel region and the gate. The gate dielectric has at least two different regions along the width of the gate. The different regions are characterized by different materials which are effective to define the two different regions to have different dielectric constants k. Other aspects and implementations are contemplated.
    Type: Application
    Filed: June 4, 2004
    Publication date: December 8, 2005
    Inventors: Cem Basceri, H. Montgomery Manning, Gurtej Sandhu, Kunal Parekh
  • Patent number: 6903437
    Abstract: In one aspect, a semiconductor device includes an array of memory cells. Individual memory cell of the array include a capacitor having first and second electrode, a dielectric layer disposed between the first and second electrodes. Select individual capacitors are energized so as to blow the dielectric layer to establish a connection between the first and second electrodes such that, after blowing the dielectric layer, the second electrode is coupled to a cell plate generator establish a bias connection therebetween. Cell plate bias connection methods are also described.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: June 7, 2005
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 6803286
    Abstract: A method of fabricating integrated circuitry comprises forming a conductive line having opposing sidewalls over a semiconductor substrate. An insulating layer is then deposited. The insulating layer is etched proximate the line along at least a portion of at least one sidewall of the line. An insulating spacer forming layer is then deposited over the substrate and the line. It is anisotropically etched to form an insulating sidewall spacer. A method of forming a local interconnect comprises forming at least two transistor gates over a semiconductor substrate. A local interconnect layer is deposited to overlie at least one of the transistor gates and interconnect at least one source/drain region of one of the gates with semiconductor substrate material proximate another of the transistor gates.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: October 12, 2004
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 6797600
    Abstract: A method of forming a local interconnect includes forming at least two transistor gates over a semiconductor substrate. A local interconnect layer is deposited to overlie at least one of the transistor gates and interconnect at least one source/drain region of one of the gates with semiconductor substrate material proximate another of the transistor gates. In one aspect, a conductivity enhancing impurity is implanted into the local interconnect layer in at least two implanting steps, with one of the implantings providing a peak implant location which is deeper into the layer than the other. Conductivity enhancing impurity is diffused from the local interconnect layer into semiconductor substrate material therebeneath. In one aspect, conductivity enhancing impurity is implanted through the local interconnect layer into semiconductor substrate material therebeneath.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: September 28, 2004
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Publication number: 20040115914
    Abstract: A method of fabricating integrated circuitry comprises forming a conductive line having opposing sidewalls over a semiconductor substrate. An insulating layer is then deposited. The insulating layer is etched proximate the line along at least a portion of at least one sidewall of the line. An insulating spacer forming layer is then deposited over the substrate and the line. It is anisotropically etched to form an insulating sidewall spacer. A method of forming a local interconnect comprises forming at least two transistor gates over a semiconductor substrate. A local interconnect layer is deposited to overlie at least one of the transistor gates and interconnect at least one source/drain region of one of the gates with semiconductor substrate material proximate another of the transistor gates.
    Type: Application
    Filed: December 5, 2003
    Publication date: June 17, 2004
    Inventor: H. Montgomery Manning
  • Publication number: 20040018710
    Abstract: A method of fabricating integrated circuitry comprises forming a conductive line having opposing sidewalls over a semiconductor substrate. An insulating layer is then deposited. The insulating layer is etched proximate the line along at least a portion of at least one sidewall of the line. An insulating spacer forming layer is then deposited over the substrate and the line. It is anisotropically etched to form an insulating sidewall spacer. A method of forming a local interconnect comprises forming at least two transistor gates over a semiconductor substrate. A local interconnect layer is deposited to overlie at least one of the transistor gates and interconnect at least one source/drain region of one of the gates with semiconductor substrate material proximate another of the transistor gates.
    Type: Application
    Filed: July 29, 2003
    Publication date: January 29, 2004
    Inventor: H. Montgomery Manning
  • Patent number: 6680519
    Abstract: Integrated circuitry fuse forming methods, integrated circuitry programming methods, and related integrated circuitry are described. In one implementation, a first layer comprising a first conductive material is formed over a substrate. A second layer comprising a second conductive material different from the first conductive material is formed over the first layer and in conductive connection therewith. A fuse area is formed by removing at least a portion of one of the first and second layers. In a preferred aspect, an assembly of layers comprising one layer disposed intermediate two conductive layers is provided. At least a portion of the one layer is removed from between the two layers to provide a void therebetween. In another aspect, programming circuitry is provided over a substrate upon which the assembly of layers is provided.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: January 20, 2004
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Publication number: 20030203548
    Abstract: A method of fabricating integrated circuitry comprises forming a conductive line having opposing sidewalls over a semiconductor substrate. An insulating layer is then deposited. The insulating layer is etched proximate the line along at least a portion of at least one sidewall of the line. An insulating spacer forming layer is then deposited over the substrate and the line. It is anisotropically etched to form an insulating sidewall spacer. A method of forming a local interconnect comprises forming at least two transistor gates over a semiconductor substrate. A local interconnect layer is deposited to overlie at least one of the transistor gates and interconnect at least one source/drain region of one of the gates with semiconductor substrate material proximate another of the transistor gates.
    Type: Application
    Filed: April 17, 2003
    Publication date: October 30, 2003
    Inventor: H. Montgomery Manning
  • Patent number: 6638842
    Abstract: A method of fabricating integrated circuitry comprises forming a conductive line having opposing sidewalls over a semiconductor substrate. An insulating layer is then deposited. The insulating layer is etched proximate the line along at least a portion of at least one sidewall of the line. An insulating spacer forming layer is then deposited over the substrate and the line. It is anisotropically etched to form an insulating sidewall spacer. A method of forming a local interconnect comprises forming at least two transistor gates over a semiconductor substrate. A local interconnect layer is deposited to overlie at least one of the transistor gates and interconnect at least one source/drain region of one of the gates with semiconductor substrate material proximate another of the transistor gates.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: October 28, 2003
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 6610587
    Abstract: A method of forming a local interconnect includes forming at least two transistor gates over a semiconductor substrate. A local interconnect layer is deposited to overlie at least one of the transistor gates and interconnect at least one source/drain region of one of the gates with semiconductor substrate material proximate another of the transistor gates. In one aspect, a conductivity enhancing impurity is implanted into the local interconnect layer in at least two implanting steps, with one of the implantings providing a peak implant location which is deeper into the layer than the other. Conductivity enhancing impurity is diffused from the local interconnect layer into semiconductor substrate material therebeneath. In one aspect, conductivity enhancing impurity is implanted through the local interconnect layer into semiconductor substrate material therebeneath.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: August 26, 2003
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 6548339
    Abstract: Methods of forming conductive lines and insulative spacers thereover are described. In accordance with one aspect of the invention, a substrate is provided having a first area and a second area relative to which conductive lines are to be formed. A layer of conductive material is formed over the first and second substrate areas and a layer of insulative material is formed over the conductive material. In a preferred implementation, insulative material is removed from the second area and conductive lines are subsequently patterned and etched in both the first and second areas. In another preferred implementation, conductive lines are first patterned and etched with insulative material in the second area being subsequently removed. The patterned and etched conducted lines have respective sidewalls.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: April 15, 2003
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 6462610
    Abstract: An integrated circuit includes a substrate pump circuit developing an internal back-bias voltage on an output, and an external terminal adapted to receive an external back-bias voltage. A semiconductor substrate is coupled to the external terminal and to the output of the substrate pump circuit. The semiconductor substrate includes at least one transistor formed in the semiconductor substrate which has a first threshold voltage when the internal back-bias voltage is applied to the substrate. The at least one transistor has a second threshold voltage greater than the first threshold voltage when the external back-bias voltage is received on the external terminal.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: October 8, 2002
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Publication number: 20020102844
    Abstract: A method of fabricating integrated circuitry comprises forming a conductive line having opposing sidewalls over a semiconductor substrate. An insulating layer is then deposited. The insulating layer is etched proximate the line along at least a portion of at least one sidewall of the line. An insulating spacer forming layer is then deposited over the substrate and the line. It is anisotropically etched to form an insulating sidewall spacer. A method of forming a local interconnect comprises forming at least two transistor gates over a semiconductor substrate. A local interconnect layer is deposited to overlie at least one of the transistor gates and interconnect at least one source/drain region of one of the gates with semiconductor substrate material proximate another of the transistor gates.
    Type: Application
    Filed: February 28, 2002
    Publication date: August 1, 2002
    Inventor: H. Montgomery Manning
  • Patent number: 6391726
    Abstract: A method of fabricating integrated circuitry comprises forming a conductive line having opposing sidewalls over a semiconductor substrate. An insulating layer is then deposited and planarize polished using an outer etch stop cap of the line as an etch stop. The insulating layer is etched proximate the line along at least a portion of at least one sidewall of the line. An insulating spacer forming layer is then deposited over the substrate and the line. It is anisotropically etched to form an insulating sidewall spacer. Methods of forming conductive lines and methods of forming local interconnects, as well as other methods of forming integrated circuitry, are disclosed and claimed.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: May 21, 2002
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 6384454
    Abstract: An SRAM cell is described which has a reduced cell area, and a reduced processing cost from conventional SRAM's. A fabrication process is described where self-aligned contacts to substrate active area and contact to a first layer of polysilicon are formed in one etch step. Electrical connection between the substrate and polysilicon is provided through a conductive layer coupled to the contacts. Self aligned contacts are fabricated to contact the active area.
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: May 7, 2002
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Publication number: 20020048865
    Abstract: A method of fabricating integrated circuitry comprises forming a conductive line having opposing sidewalls over a semiconductor substrate. An insulating layer is then deposited. The insulating layer is etched proximate the line along at least a portion of at least one sidewall of the line. An insulating spacer forming layer is then deposited over the substrate and the line. It is anisotropically etched to form an insulating sidewall spacer. A method of forming a local interconnect comprises forming at least two transistor gates over a semiconductor substrate. A local interconnect layer is deposited to overlie at least one of the transistor gates and interconnect at least one source/drain region of one of the gates with semiconductor substrate material proximate another of the transistor gates.
    Type: Application
    Filed: August 31, 2001
    Publication date: April 25, 2002
    Inventor: H. Montgomery Manning