Patents by Inventor H. Montgomery Manning

H. Montgomery Manning has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7572710
    Abstract: The invention comprises methods of forming a conductive contact to a source/drain region of a field effect transistor, and methods of forming local interconnects. In one implementation, a method of forming a conductive contact to a source/drain region of a field effect transistor includes providing gate dielectric material intermediate a transistor gate and a channel region of a field effect transistor. At least some of the gate dielectric material extends to be received over at least one source/drain region of the field effect transistor. The gate dielectric material received over the one source/drain region is exposed to conditions effective to change it from being electrically insulative to being electrically conductive and in conductive contact with the one source/drain region. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: August 11, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Gurtej S. Sandhu, H. Montgomery Manning
  • Publication number: 20090184389
    Abstract: A non-volatile nanotube switch and memory arrays constructed from these switches are disclosed. A non-volatile nanotube switch includes a conductive terminal and a nanoscopic element stack having a plurality of nanoscopic elements arranged in direct electrical contact, a first comprising a nanotube fabric and a second comprising a carbon material, a portion of the nanoscopic element stack in electrical contact with the conductive terminal. Control circuitry is provided in electrical communication with and for applying electrical stimulus to the conductive terminal and to at least a portion of the nanoscopic element stack. At least one of the nanoscopic elements is capable of switching among a plurality of electronic states in response to a corresponding electrical stimuli applied by the control circuitry to the conductive terminal and the portion of the nanoscopic element stack. For each electronic state, the nanoscopic element stack provides an electrical pathway of corresponding resistance.
    Type: Application
    Filed: January 20, 2009
    Publication date: July 23, 2009
    Inventors: Claude L. BERTIN, Eliodor G. GHENCIU, Thomas RUECKES, H. Montgomery MANNING
  • Publication number: 20090173982
    Abstract: A memory cell, device, and system include a memory cell having a shared digitline, a storage capacitor, and a plurality of access transistors configured to selectively electrically couple the storage capacitor with the shared digitline. The digitline couples with adjacent memory cells and the plurality of access transistor selects which adjacent memory cell is coupled to the shared digitline. A method of forming the memory cell includes forming a buried digitline in the substrate and a vertical pillar in the substrate immediately adjacent to the buried digitline. A dual gate transistor is formed on the vertical pillar with a first end electrically coupled to the buried digitline and a second end coupled to a storage capacitor formed thereto.
    Type: Application
    Filed: March 17, 2009
    Publication date: July 9, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: H. Montgomery Manning, David H. Wells
  • Publication number: 20090176365
    Abstract: The present disclosure includes various method, circuit, device, and system embodiments. One such method embodiment includes creating a trench in an insulator stack material having a portion of the trench positioned between two of a number of gates and depositing a spacer material to at least one side surface of the trench. This method also includes depositing a conductive material into the trench and depositing a cap material into the trench.
    Type: Application
    Filed: March 11, 2009
    Publication date: July 9, 2009
    Applicant: Micron Technology, Inc.
    Inventors: James Mathew, H. Montgomery Manning
  • Patent number: 7557006
    Abstract: A mass of material is formed over a semiconductor substrate. Semiconductive material is formed laterally proximate the mass of material. A space is provided laterally between the mass of material and the semiconductive material. The space comprises an outermost portion and a portion immediately adjacent thereto. The outermost portion has a maximum lateral width which is greater than that of the adjacent portion. Gate dielectric material and conductive gate material are formed within the space. The gate dielectric material and the conductive gate material in combination fill the adjacent portion of the space but do not fill the outermost portion of the space. At least the conductive gate material is etched from at least a majority of the outermost portion of the space. Source/drain regions are formed operatively proximate the conductive gate material and the semiconductive material is used as a channel region of the field effect transistor.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: July 7, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, H. Montgomery Manning, Cem Basceri
  • Patent number: 7544554
    Abstract: The invention includes semiconductor constructions, methods of forming gatelines, and methods of forming transistor structures. The invention can include, for example, a damascene method of forming a gateline. A thin segment of dielectric material is formed between two thicker segments of dielectric material, with the thin and thicker segments of dielectric material being within an opening. A gateline material is formed within the opening and over the thin and thicker segments of dielectric material. The construction comprising the gateline material over the thin and thicker segments of dielectric material can be supported by a semiconductor substrate having a primary surface which defines a horizontal direction. The thin and thicker segments of dielectric material can comprise upper surfaces substantially parallel to the primary surface of the substrate, and can join to one another at steps having primary surfaces substantially orthogonal to the primary surface of the substrate.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: June 9, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Kunal R. Parekh, H. Montgomery Manning
  • Patent number: 7544563
    Abstract: The invention includes methods and integrated circuitry. Pillars project outwardly from openings in a first material over individual capacitor storage node locations. Insulative material is deposited over the first material laterally about sidewalls of the projecting pillars, and is anisotropically etched effective to expose underlying first material and leave electrically insulative material received laterally about the sidewalls of the projecting pillars. Openings are formed within a second material to the pillars. The pillars are etched from the substrate through the openings in the second material, and individual capacitor electrodes are formed within the openings in electrical connection with the storage node locations. The individual capacitor electrodes have the anisotropically etched insulative material received laterally about their outer sidewalls. The individual capacitor electrodes are incorporated into a plurality of capacitors. Other implementations and aspects are contemplated.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: June 9, 2009
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 7534694
    Abstract: The invention includes methods of forming a plurality of capacitors. In one implementation, a plurality of capacitor electrode openings is formed over a substrate. Individual of the capacitor electrode openings are bounded on a first pair of opposing sides by a first capacitor electrode-forming material at one elevation and on a second pair of opposing sides by a different second capacitor electrode-forming material at the one elevation. Individual capacitor electrodes are formed within individual of the capacitor electrode openings. The capacitor electrodes are incorporated into a plurality of capacitors. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: May 19, 2009
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 7517753
    Abstract: The invention includes methods of forming pluralities of capacitors. In one implementation, a method of forming a plurality of capacitors includes anodically etching individual capacitor electrode channels within a material over individual capacitor storage node locations on a substrate. The channels are at least partially filled with electrically conductive capacitor electrode material in electrical connection with the individual capacitor storage node locations. The capacitor electrode material is incorporated into a plurality of capacitors. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: April 14, 2009
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 7504298
    Abstract: A memory cell, device, and system include a memory cell having a shared digitline, a storage capacitor, and a plurality of access transistors configured to selectively electrically couple the storage capacitor with the shared digitline. The digitline couples with adjacent memory cells and the plurality of access transistor selects which adjacent memory cell is coupled to the shared digitline. A method of forming the memory cell includes forming a buried digitline in the substrate and a vertical pillar in the substrate immediately adjacent to the buried digitline. A dual gate transistor is formed on the vertical pillar with a first end electrically coupled to the buried digitline and a second end coupled to a storage capacitor formed thereto.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: March 17, 2009
    Assignee: Micron Technology, Inc.
    Inventors: H. Montgomery Manning, David H. Wells
  • Patent number: 7453103
    Abstract: The invention includes semiconductor structures having buried silicide-containing bitlines. Vertical surround gate transistor structures can be formed over the bitlines. The surround gate transistor structures can be incorporated into memory devices, such as, for example, DRAM devices. The invention can be utilized for forming 4F2 DRAM devices.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: November 18, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Todd R. Abbott, H. Montgomery Manning
  • Patent number: 7449391
    Abstract: The invention includes semiconductor constructions, and also includes methods of forming pluralities of capacitor devices. An exemplary method of the invention includes forming conductive storage node material within openings in an insulative material to form conductive containers. A retaining structure lattice is formed in physical contact with at least some of the containers, and subsequently the insulative material is removed to expose outer surfaces of the containers. The retaining structure can alleviate toppling or other loss of structural integrity of the container structures. The electrically conductive containers correspond to first capacitor electrodes. After the outer sidewalls of the containers are exposed, dielectric material is formed within the containers and along the exposed outer sidewalls. Subsequently, a second capacitor electrode is formed over the dielectric material. The first and second capacitor electrodes, together with the dielectric material, form a plurality of capacitor devices.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: November 11, 2008
    Assignee: Micron Technology, Inc.
    Inventors: H. Montgomery Manning, Thomas M. Graettinger, Marsela Pontoh
  • Patent number: 7445991
    Abstract: The invention includes methods of forming a plurality of capacitors. In one implementation, a plurality of capacitor electrode openings is formed over a substrate. Individual of the capacitor electrode openings are bounded on a first pair of opposing sides by a first capacitor electrode-forming material at one elevation and on a second pair of opposing sides by a different second capacitor electrode-forming material at the one elevation. Individual capacitor electrodes are formed within individual of the capacitor electrode openings. The capacitor electrodes are incorporated into a plurality of capacitors. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: November 4, 2008
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 7442977
    Abstract: This invention includes gated field effect devices, and methods of forming gated field effect devices. In one implementation, a gated field effect device includes a pair of source/drain regions having a channel region therebetween. A gate is received proximate the channel region between the source/drain regions. The gate has a gate width between the source/drain regions. A gate dielectric is received intermediate the channel region and the gate. The gate dielectric has at least two different regions along the width of the gate. The different regions are characterized by different materials which are effective to define the two different regions to have different dielectric constants k. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: October 28, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, H. Montgomery Manning, Gurtej S. Sandhu, Kunal R. Parekh
  • Patent number: 7439152
    Abstract: The invention includes methods of forming a plurality of capacitors. In one implementation, a plurality of capacitor electrode openings is formed over a substrate. Individual of the capacitor electrode openings are bounded on a first pair of opposing sides by a first capacitor electrode-forming material at one elevation and on a second pair of opposing sides by a different second capacitor electrode-forming material at the one elevation. Individual capacitor electrodes are formed within individual of the capacitor electrode openings. The capacitor electrodes are incorporated into a plurality of capacitors. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: October 21, 2008
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 7420238
    Abstract: The invention includes semiconductor constructions, and also includes methods of forming pluralities of capacitor devices. An exemplary method of the invention includes forming conductive storage node material within openings in an insulative material to form conductive containers. A retaining structure lattice is formed in physical contact with at least some of the containers, and subsequently the insulative material is removed to expose outer surfaces of the containers. The retaining structure can alleviate toppling or other loss of structural integrity of the container structures. The electrically conductive containers correspond to first capacitor electrodes. After the outer sidewalls of the containers are exposed, dielectric material is formed within the containers and along the exposed outer sidewalls. Subsequently, a second capacitor electrode is formed over the dielectric material. The first and second capacitor electrodes, together with the dielectric material, form a plurality of capacitor devices.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: September 2, 2008
    Assignee: Micron Technology, Inc.
    Inventors: H. Montgomery Manning, Thomas M. Graettinger, Marsela Pontoh
  • Patent number: 7402498
    Abstract: The invention includes methods of forming trench isolation regions. In one implementation, a masking material is formed over a semiconductor substrate. The masking material comprises at least one of tungsten, titanium nitride and amorphous carbon. An opening is formed through the masking material and into the semiconductor substrate effective to form an isolation trench within semiconductive material of the semiconductor substrate. A trench isolation material is formed within the isolation trench and over the masking material outside of the trench effective to overfill the isolation trench. The trench isolation material is polished at least to an outermost surface of the at least one of tungsten, titanium nitride and amorphous carbon of the masking material. The at least one of tungsten, titanium nitride and amorphous carbon is/are etched from the substrate. Other implementations and aspects are contemplated.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: July 22, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Garo J. Derderian, H. Montgomery Manning
  • Patent number: 7393743
    Abstract: The invention includes methods of forming a plurality of capacitors. In one implementation, a plurality of capacitor electrode openings is formed over a substrate. Individual of the capacitor electrode openings are bounded on a first pair of opposing sides by a first capacitor electrode-forming material at one elevation and on a second pair of opposing sides by a different second capacitor electrode-forming material at the one elevation. Individual capacitor electrodes are formed within individual of the capacitor electrode openings. The capacitor electrodes are incorporated into a plurality of capacitors. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: July 1, 2008
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 7393741
    Abstract: The invention comprises methods of forming pluralities of capacitors. In one implementation, metal is formed over individual capacitor storage node locations on a substrate. A patterned masking layer is formed over the metal. The patterned masking layer comprises openings therethrough to an outer surface of the metal. Individual of the openings are received over individual of the capacitor storage node locations. A pit is formed in the metal outer surface within individual of the openings. After forming the pits, the metal is anodically oxidized through the openings effective to form a single metal oxide-lined channel in individual of the openings over the individual capacitor storage nodes. Individual capacitor electrodes are formed within the channels in electrical connection with the individual capacitor storage node locations. At least some of the metal oxide is removed from the substrate, and the individual capacitor electrodes are incorporated into a plurality of capacitors.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: July 1, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, H. Montgomery Manning, Stephen J. Kramer
  • Patent number: 7387939
    Abstract: The invention includes methods of forming semiconductor constructions and methods of forming pluralities of capacitor devices. An exemplary method of the invention includes forming conductive material within openings in an insulative material to form capacitor electrode structures. A lattice is formed in physical contact with at least some of the electrode structures, a protective cap is formed over the lattice, and subsequently some of the insulative material is removed to expose outer surfaces of the electrode structures. The lattice can alleviate toppling or other loss of structural integrity of the electrode structures, and the protective cap can protect covered portions of the insulative material from the etch. After the outer sidewalls of the electrode structures are exposed, the protective cap is removed. The electrode structures are then incorporated into capacitor constructions.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: June 17, 2008
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning