Patents by Inventor Haining S. Yang

Haining S. Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140151644
    Abstract: The present invention relates to a heterojunction tunneling effect transistor (TFET), which comprises spaced apart source and drain regions with a channel region located therebetween and a gate stack located over the channel region. The drain region comprises a first semiconductor material and is doped with a first dopant species of a first conductivity type. The source region comprises a second, different semiconductor material and is doped with a second dopant species of a second, different conductivity type. The gate stack comprises at least a gate dielectric and a gate conductor. When the heterojunction TFET is an n-channel TFET, the drain region comprises n-doped silicon, while the source region comprises p-doped silicon germanium. When the heterojunction TFET is a p-channel TFET, the drain region comprises p-doped silicon, while the source region comprises n-doped silicon carbide.
    Type: Application
    Filed: November 25, 2013
    Publication date: June 5, 2014
    Applicant: International Business Machines Corporation
    Inventors: Xiangdong Chen, Haining S. Yang
  • Patent number: 8697521
    Abstract: An improved SRAM and fabrication method are disclosed. The method comprises use of a nitride layer to encapsulate PFETs and logic NFETs, protecting the gates of those devices from oxygen exposure. NFETs that are used in the SRAM cells are exposed to oxygen during the anneal process, which alters the effective work function of the gate metal, such that the threshold voltage is increased, without the need for increasing the dopant concentration, which can adversely affect issues such as mismatch due to random dopant fluctuation, GIDL and junction leakage.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: April 15, 2014
    Assignee: International Business Machines Corporation
    Inventors: Xinlin Wang, Xiangdong Chen, Haining S. Yang
  • Patent number: 8674444
    Abstract: A semiconductor structure includes a semiconductor substrate. A conductive gate abuts a gate insulator for controlling conduction of a channel region. The gate insulator abuts the channel region. A source region and a drain region are associated with the conductive gate. The source region includes a first material and the drain region includes a second material. The conductive gate is self-aligned to the first and the second material.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: March 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Haining S. Yang, Kangguo Cheng, Robert Wong
  • Publication number: 20140027851
    Abstract: Contact with a floating body of an FET in SOI may be formed in a portion of one of the two diffusions of the FET, wherein the portion of the diffusion (such as N?, for an NFET) which is “sacrificed” for making the contact is a portion of the diffusion which is not immediately adjacent (or under) the gate. This works well with linked body FETs, wherein the diffusion does not extend all the way to BOX, hence the linked body (such as P?) extends under the diffusion where the contact is being made. An example showing making contact for ground to two NFETs (PG and PD) of a 6T SRAM cell is shown.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 30, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yue Tan, Zhibin Ren, Richard A. Wachnik, Haining S. Yang
  • Patent number: 8629506
    Abstract: A CMOS structure and a method for fabricating the CMOS structure include within a semiconductor substrate a first gate located over a first active region of a first polarity and a second gate located over a second active region of a second polarity different than the first polarity. The first active region and the second active region are separated by an isolation region. The first gate and the second gate are co-linear, with facing endwalls that terminate over the isolation region. The facing endwalls do not have a spacer located or formed adjacent or adjoining thereto, although sidewalls of the first gate and the second gate do. The CMOS structure may be fabricated using a sequential replacement gate method.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: January 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Haining S. Yang
  • Patent number: 8587062
    Abstract: A field effect transistor (FET) with an adjacent body contact, a SOI IC with circuits including the FETs and a method of fabricating the ICs. Device islands are formed in the silicon surface layer of a SOI wafer. Gates are defined on the wafer. Body contacts are formed in a perimeter conductive region adjacent to the gates. The body contacts may be either a silicide strap along the gate sidewall at one side of the FET or a separate contact separated from the gate by a dielectric stripe at one side of the FET. Separate contacts may be connected to a bias supply.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: November 19, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jack A. Mandelman, Haining S. Yang
  • Publication number: 20130277796
    Abstract: A semiconductor fuse and methods of making the same. The fuse includes a fuse element and a compressive stress liner that reduces the electro-migration resistance of the fuse element. The method includes forming a substrate, forming a trench feature in the substrate, depositing fuse material in the trench feature, depositing compressive stress liner material over the fuse material, and patterning the compressive stress liner material.
    Type: Application
    Filed: June 17, 2013
    Publication date: October 24, 2013
    Inventors: Chih-Chao YANG, Haining S. YANG
  • Publication number: 20130228925
    Abstract: A hybrid interconnect structure is provided that includes a dielectric material having a conductive material embedded within at least one opening in the dielectric material, wherein the conductive material is laterally spaced apart from the dielectric material by a diffusion barrier, a dense dielectric spacer and, optionally, an air gap. The presence of the dense dielectric spacer results in a hybrid interconnect structure that has improved reliability and performance. Moreover, the hybrid interconnect structure provides for better process control which leads to the potential for high volume manufacturing.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 5, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chih-Chao Yang, Thomas M. Shaw, Keith Kwong Hon Wong, Haining S. Yang
  • Publication number: 20130228900
    Abstract: A gate conductor structure is provided having a barrier region between a N-type device and a P-type device, wherein the barrier region minimizes or eliminates cross-diffusion of dopant species across the barrier region. The barrier region comprises at least one sublithographic gap in the gate conductor structure. The sublithographic gap is formed by using self-assembling copolymers to form a sublithographic patterned mask over the gate conductor structure. According to one embodiment, at least one sublithographic gap is a slit or line that traverses the width of the gate conductor structure. The sublithographic gap is sufficiently deep to minimize or prevent cross-diffusion of the implanted dopant from the upper portion of the gate conductor. According to another embodiment, the sublithographic gaps are of sufficient density that cross-diffusion of dopants is reduced or eliminated during an activation anneal such that changes in Vt are minimized.
    Type: Application
    Filed: April 18, 2013
    Publication date: September 5, 2013
    Applicant: International Business Machines Corporation
    Inventors: Wai-Kin Li, Haining S. Yang
  • Patent number: 8513769
    Abstract: Electrical fuses and resistors having a sublithographic lateral or vertical dimension are provided. A conductive structure comprising a conductor or a semiconductor is formed on a semiconductor substrate. At least one insulator layer is formed on the conductive structure. A recessed area is formed in the at least one insulator layer. Self-assembling block copolymers are applied into the recessed area and annealed to form a fist set of polymer blocks and a second set of polymer blocks. The first set of polymer blocks are etched selective to the second set and the at least one insulator layer. Features having sublithographic dimensions are formed in the at least one insulator layer and/or the conductive structure. Various semiconductor structures having sublithographic dimensions are formed including electrical fuses and resistors.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: August 20, 2013
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Matthew E. Colburn, Timothy J. Dalton, Daniel C. Edelstein, Wai-Kin Li, Anthony K. Stamper, Haining S. Yang
  • Patent number: 8492871
    Abstract: A semiconductor fuse and methods of making the same. The fuse includes a fuse element and a compressive stress liner that reduces the electro-migration resistance of the fuse element. The method includes forming a substrate, forming a trench feature in the substrate, depositing fuse material in the trench feature, depositing compressive stress liner material over the fuse material, and patterning the compressive stress liner material.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Haining S. Yang
  • Patent number: 8476717
    Abstract: A semiconductor structure. The semiconductor structure includes: a semiconductor substrate which includes a top substrate surface which defines a reference direction perpendicular to the top substrate surface and further includes a first semiconductor body region and a second semiconductor body region; a first gate dielectric region and a second gate dielectric region on top of the first and second semiconductor body regions, respectively; a first gate electrode region on top of the semiconductor substrate and the first gate dielectric region; a second gate electrode region on top of the semiconductor substrate and the second gate dielectric region; and a gate divider region in direct physical contact with the first and second gate electrode regions. The gate divider region does not overlap the first and second gate electrode regions in the reference direction.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: July 2, 2013
    Assignee: International Business Machines Corporation
    Inventors: Robert C. Wong, Haining S. Yang
  • Patent number: 8461625
    Abstract: An integrated circuit with stress enhanced channels, a design structure and a method of manufacturing the integrated circuit is provided. The method includes forming a dummy gate structure on a substrate and forming a trench in the dummy gate structure. The method further includes filling a portion of the trench with a strain inducing material and filling a remaining portion of the trench with gate material.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: June 11, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Haining S. Yang
  • Patent number: 8456006
    Abstract: The present invention provides an interconnect structure (of the single or dual damascene type) and a method of forming the same, in which a dense (i.e., non-porous) dielectric spacer is present on the sidewalls of a dielectric material. More specifically, the inventive structure includes a dielectric material having a conductive material embedded within at least one opening in the dielectric material, wherein the conductive material is laterally spaced apart from the dielectric material by a diffusion barrier, a dense dielectric spacer and, optionally, an air gap. The presence of the dense dielectric spacer results in a hybrid interconnect structure that has improved reliability and performance as compared with existing prior art interconnect structures which do not include such dense dielectric spacers. Moreover, the inventive hybrid interconnect structure provides for better process control which leads to the potential for high volume manufacturing.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: June 4, 2013
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Thomas M. Shaw, Keith Kwong Hon Wong, Haining S. Yang
  • Patent number: 8441000
    Abstract: The present invention relates to a heterojunction tunneling effect transistor (TFET), which comprises spaced apart source and drain regions with a channel region located therebetween and a gate stack located over the channel region. The drain region comprises a first semiconductor material and is doped with a first dopant species of a first conductivity type. The source region comprises a second, different semiconductor material and is doped with a second dopant species of a second, different conductivity type. The gate stack comprises at least a gate dielectric and a gate conductor. When the heterojunction TFET is an n-channel TFET, the drain region comprises n-doped silicon, while the source region comprises p-doped silicon germanium. When the heterojunction TFET is a p-channel TPET, the drain region comprises p-doped silicon, while the source region comprises n-doped SiC.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: May 14, 2013
    Assignee: International Business Machines Corporation
    Inventors: Xiangdong Chen, Haining S. Yang
  • Patent number: 8432764
    Abstract: A method of increasing a drain to source voltage measured at an access pass-gate to a SRAM circuit in a SRAM memory array, including increasing a low voltage from a low voltage source powering said SRAM circuit, and increasing a high voltage from a high voltage source powering the SRAM circuit.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: April 30, 2013
    Assignee: International Business Machines Corporation
    Inventors: Omer Heymann, Dana Bar-Niv, Noam Jungmann, Elazar Kachir, Udi Nir, Limor Plotkin, Amira Rozenfeld, Robert C. Wong, Haining S. Yang
  • Patent number: 8405131
    Abstract: The present invention relates to a semiconductor device that comprises at least one field effect transistor (FET) containing a source region, a drain region, a channel region, a gate dielectric layer, a gate electrode, and one or more gate sidewall spacers. The gate electrode of such an FET contains an intrinsically stressed gate metal silicide layer, which is laterally confined by one or more gate sidewall spacers and is arranged and constructed for creating stress in the channel region of the FET. Preferably, the semiconductor device comprises at least one p-channel FET, and more preferably, the p-channel FET has a gate electrode with an intrinsically stressed gate metal silicide layer that is laterally confined by one or more gate sidewall spacers and is arranged and constructed for creating compressive stress in the p-channel of the FET.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: March 26, 2013
    Assignee: International Business Machines Corporation
    Inventor: Haining S. Yang
  • Patent number: 8361704
    Abstract: This invention provides a method for reducing tip-to-tip spacing between lines using a combination of photolithographic and copolymer self-assembling lithographic techniques. A mask layer is first formed over a substrate with a line structure. A trench opening of a width d is created in the mask layer. A layer of a self-assembling block copolymer is then applied over the mask layer. The block copolymer layer is annealed to form a single unit polymer block of a width or a diameter w which is smaller than d inside the trench opening. The single unit polymer block is selectively removed to form a single opening of a width or a diameter w inside the trench opening. An etch transfer process is performed using the single opening as a mask to form an opening in the line structure in the substrate.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: January 29, 2013
    Assignee: International Business Machines Corporation
    Inventors: Matthew E. Colburn, Wai-kin Li, Haining S. Yang
  • Patent number: 8338292
    Abstract: Contact with a floating body of an FET in SOI may be formed in a portion of one of the two diffusions of the FET, wherein the portion of the diffusion (such as N?, for an NFET) which is “sacrificed” for making the contact is a portion of the diffusion which is not immediately adjacent (or under) the gate. This works well with linked body FETs, wherein the diffusion does not extend all the way to BOX, hence the linked body (such as P?) extends under the diffusion where the contact is being made. An example showing making contact for ground to two NFETs (PG and PD) of a 6T SRAM cell is shown.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: December 25, 2012
    Assignee: International Business Machines Corporation
    Inventors: Yue Tan, Zhibin Ren, Richard A. Wachnik, Haining S. Yang
  • Patent number: 8293631
    Abstract: Semiconductor devices are provided which have a tensile and/or compressive strain applied thereto and methods of manufacturing. The structure includes a gate stack comprising an oxide layer, a polysilicon layer and sidewalls with adjacent spacers. The structure further includes an epitaxially grown straining material directly on the polysilicon layer and between portions of the sidewalls. The epitaxially grown straining material, in a relaxed state, strains the polysilicon layer.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: October 23, 2012
    Assignee: International Business Machines Corporation
    Inventors: Thomas W Dyer, Haining S Yang