Patents by Inventor Haining S. Yang

Haining S. Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7842940
    Abstract: A semiconducting material that has all the advantages of prior art SOI substrates including, for example, low parasitic capacitance and leakage, without having floating body effects is provided. More specifically, the present invention provides a Semiconductor-on-Pores (SOP) material that includes a top semiconductor layer and a bottom semiconductor layer, wherein the semiconductor layers are separated in at least one region by a porous semiconductor material. Semiconductor structures including the SOP material as a substrate as well as a method of fabricating the SOP material are also provided. The method includes forming a p-type region with a first semiconductor layer, converting the p-type region to a porous semiconductor material, sealing the upper surface of the porous semiconductor material by annealing, and forming a second semiconductor layer atop the porous semiconductor material.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: November 30, 2010
    Assignee: International Business Machines Corporation
    Inventors: Joel P. de Souza, Keith E. Fogel, Brian J. Greene, Devendra K. Sadana, Haining S. Yang
  • Publication number: 20100295132
    Abstract: Structure and method for providing a programmable anti-fuse in a FET structure. A method of forming the programmable anti-fuse includes: providing a p? substrate with an n+ gate stack; implanting an n+ source region and an n+ drain region in the p? substrate; forming a resist mask over the n+ drain region, while leaving the n+ source region exposed; etching the n+ source region to form a recess in the n+ source region; and growing a p+ epitaxial silicon germanium layer in the recess in the n+ source region to form a pn junction that acts as a programmable diode or anti-fuse.
    Type: Application
    Filed: February 2, 2010
    Publication date: November 25, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ping-Chuan Wang, Robert C. Wong, Haining S. Yang
  • Patent number: 7834387
    Abstract: A first gate stack comprising two stacked gate electrodes in a first device region, a second gate stack comprising a metal gate electrode in a second device region, and a third gate stack comprising a semiconductor gate electrode in a third device region are formed by forming and removing portions of a silicon-oxide based gate dielectric layer, a first doped semiconductor layer, an interfacial dielectric layer, a high-k gate dielectric layer, a metal gate layer, and an optional semiconductor material layer in various device regions. The first gate stack may be employed to form a flash memory, and the second and third gate stacks may be employed to form a pair of p-type and n-type field effect transistors.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: November 16, 2010
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Deok-kee Kim, Haining S. Yang, Xiaojun Yu
  • Publication number: 20100283121
    Abstract: Electrical fuses and resistors having a sublithographic lateral or vertical dimension are provided. A conductive structure comprising a conductor or a semiconductor is formed on a semiconductor substrate. At least one insulator layer is formed on the conductive structure. A recessed area is formed in the at least one insulator layer. Self-assembling block copolymers are applied into the recessed area and annealed to form a fist set of polymer blocks and a second set of polymer blocks. The first set of polymer blocks are etched selective to the second set and the at least one insulator layer. Features having sublithographic dimensions are formed in the at least one insulator layer and/or the conductive structure. Various semiconductor structures having sublithographic dimensions are formed including electrical fuses and resistors.
    Type: Application
    Filed: April 22, 2010
    Publication date: November 11, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles T. Black, Matthew E. Colburn, Timothy J. Dalton, Daniel C. Edelstein, Wai-Kin Li, Anthony K. Stamper, Haining S. Yang
  • Patent number: 7825490
    Abstract: An electrical fuse is formed on a semiconductor substrate and a first dielectric layer is formed over the electrical fuse. At least one opening is formed by lithographic methods and a reactive ion etch in the first dielectric layer down to a top surface of the electrical fuse or down to shallow trench isolation. A second dielectric layer is deposited by a non-conformal deposition. Thickness of the second dielectric layer on the sidewalls of the at least one opening increases with height so that at least one cavity encapsulated by the second dielectric layer is formed in the at least one opening. The at least one cavity provides enhanced thermal isolation of the electrical fuse since the cavity provides superior thermal isolation than a dielectric material.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: November 2, 2010
    Assignee: International Business Machines Corporation
    Inventors: Deok-kee Kim, Wai-Kin Li, Haining S. Yang
  • Publication number: 20100252881
    Abstract: The present invention provides an improved CMOS diode structure with dual gate conductors. Specifically, a substrate comprising a first n-doped region and a second p-doped region is formed. A third region of either n-type or p-type conductivity is located between the first and second regions. A first gate conductor of n-type conductivity and a second gate conductor of p-type conductivity are located over the substrate and adjacent to the first and second regions, respectively. Further, the second gate conductor is spaced apart and isolated from the first gate conductor by a dielectric isolation structure. An accumulation region with an underlying depletion region can be formed in such a diode structure between the third region and the second or the first region, and such an accumulation region preferably has a width that is positively correlated with that of the second or the first gate conductor.
    Type: Application
    Filed: June 14, 2010
    Publication date: October 7, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David M. Onsongo, Werner Rausch, Haining S. Yang
  • Publication number: 20100237460
    Abstract: An electrically programmable fuse comprising a cathode member, an anode member, and a link member, wherein the cathode member, the anode member, and the link member each comprise one of a plurality of materials operative to localize induced electromigration in the programmable fuse.
    Type: Application
    Filed: August 30, 2007
    Publication date: September 23, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Deok-kee Kim, Keith Kwong Hon Wong, Chih-Chao Yang, Haining S. Yang
  • Publication number: 20100237424
    Abstract: A CMOS structure and a method for fabricating the CMOS structure include within a semiconductor substrate a first gate located over a first active region of a first polarity and a second gate located over a second active region of a second polarity different than the first polarity. The first active region and the second active region are separated by an isolation region. The first gate and the second gate are co-linear, with facing endwalls that terminate over the isolation region. The facing endwalls do not have a spacer located or formed adjacent or adjoining thereto, although sidewalls of the first gate and the second gate do. The CMOS structure may be fabricated using a sequential replacement gate method.
    Type: Application
    Filed: March 19, 2009
    Publication date: September 23, 2010
    Applicant: International Business Machines Corporation
    Inventors: KANGGUO CHENG, HAINING S. YANG
  • Patent number: 7790558
    Abstract: Method of enhancing stress in a semiconductor device having a gate stack disposed on a substrate. The method utilizes depositing a nitride film along a surface of the substrate and the gate stack. The nitride film is thicker over a surface of the substrate and thinner over a portion of the gate stack.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: September 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Haining S. Yang, Huilong Zhu
  • Patent number: 7791109
    Abstract: A local interconnect is formed with a gate conductor line that has an exposed sidewall on an active area of a semiconductor substrate. The exposes sidewall comprises a silicon containing material that may form a silicide alloy upon silicidation. During a silicidation process, a gate conductor sidewall silicide alloy forms on the exposed sidewall of the gate conductor line and an active area silicide is formed on the active area. The two silicides are joined to provide an electrical connection between the active area and the gate conductor line. Multiple sidewalls may be exposed on the gate conductor line to make multiple connections to different active area silicides.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: September 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Clement H. Wann, Haining S. Yang
  • Patent number: 7785937
    Abstract: An electrical fuse and a first dielectric layer thereupon are formed on a semiconductor substrate. Self-assembling block copolymers containing two or more different polymeric block components are applied into a recessed region surrounded by a dielectric template layer. The self-assembling block copolymers are then annealed to form a pattern of multiple circles having a sublithographic diameter. The pattern of multiple circles is transferred into the first dielectric layer by a reactive ion etch, wherein the portion of the first dielectric layer above the fuselink has a honeycomb pattern comprising multiple circular cylindrical holes. A second dielectric layer is formed over the circular cylindrical holes by a non-conformal chemical vapor deposition and sublithographic cavities are formed on the fuselink. The sublithographic cavities provide enhanced thermal insulation relative to dielectric materials to the fuselink so that the electrical fuse may be programmed with less programming current.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: August 31, 2010
    Assignee: International Business Machines Corporation
    Inventors: Deok-kee Kim, Wai-Kin Li, Haining S. Yang
  • Patent number: 7786527
    Abstract: A semiconductor structure including at least one transistor located on a surface of a semiconductor substrate, wherein the at least one transistor has a sub-lithographic channel length, is provided. Also provided is a method to form such a semiconductor structure using self-assembling block copolymer that can be placed at a specific location using a pre-fabricated hard mask pattern.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: August 31, 2010
    Assignee: International Business Machines Corporation
    Inventors: Haining S. Yang, Wai-Kin Li
  • Patent number: 7781847
    Abstract: A method of processing a substrate of a device comprises the as following steps. Form a cap layer over the substrate. Form a dummy layer over the cap layer, the cap layer having a top surface. Etch the dummy layer forming patterned dummy elements of variable widths and exposing sidewalls of the dummy elements and portions of the top surface of the cap layer aside from the dummy elements. Deposit a spacer layer over the device covering the patterned dummy elements and exposed surfaces of the cap layer. Etch back the spacer layer forming sidewall spacers aside from the sidewalls of the patterned dummy elements spaced above a minimum spacing and forming super-wide spacers between sidewalls of the patterned dummy elements spaced less than the minimum spacing. Strip the patterned dummy elements. Expose portions of the substrate aside from the sidewall spacers. Pattern exposed portions of the substrate by etching into the substrate.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: August 24, 2010
    Assignee: International Business Machines Corporation
    Inventor: Haining S. Yang
  • Publication number: 20100207213
    Abstract: Contact with a floating body of an FET in SOI may be formed in a portion of one of the two diffusions of the FET, wherein the portion of the diffusion (such as N?, for an NFET) which is “sacrificed” for making the contact is a portion of the diffusion which is not immediately adjacent (or under) the gate. This works well with linked body FETs, wherein the diffusion does not extend all the way to BOX, hence the linked body (such as P?) extends under the diffusion where the contact is being made. An example showing making contact for ground to two NFETs (PG and PD) of a 6T SRAM cell is shown.
    Type: Application
    Filed: February 17, 2010
    Publication date: August 19, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yue Tan, Zhibin Ren, Richard A. Wachnik, Haining S. Yang
  • Patent number: 7777296
    Abstract: A nano-fuse structural arrangement, includes, for example, a semiconductor substrate having an electrically conductive region formed thereon; an electrically conductive elongated nano-structure having a maximum diameter of less than approximately 50 nm and a maximum length of approximately 250 nm and being formed on the electrically conductive region; a barrier having barrier parts completely spaced from and completely surrounding elongated outer surfaces of the nano-structure, the spaces between the barrier and surfaces consisting essentially of a vacuum and being approximately equally spaced, so that the electrically conductive elongated nano-structure is blowable responsive to an electrical current flowable there through in a range of approximately 4 ?A to approximately 120 ?A.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: August 17, 2010
    Assignee: International Business Machines Corporation
    Inventors: Haining S. Yang, Jack A. Mandelman
  • Patent number: 7777297
    Abstract: A fuse structure includes a non-planar fuse material layer typically located over and replicating a topographic feature within a substrate. The non-planar fuse material layer includes an angular bend that assists in providing a lower severance current within the non-planar fuse material layer.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: August 17, 2010
    Assignee: International Business Machines Corporation
    Inventors: Haining S. Yang, Wai-Kin Li, Deok-Kee Kim
  • Publication number: 20100200934
    Abstract: A field effect structure and a method for fabricating the field effect structure include a germanium containing channel interposed between a plurality of source and drain regions. The germanium containing channel is coplanar with the plurality of source and drain regions, and the germanium containing channel includes a germanium containing material having a germanium content greater than the germanium content of the plurality of source and drain regions.
    Type: Application
    Filed: February 9, 2010
    Publication date: August 12, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Xiangdong Chen, Brian J. Greene, Haining S. Yang
  • Patent number: 7767099
    Abstract: The present invention is directed to the formation of sublithographic features in a semiconductor structure using self-assembling polymers. The self-assembling polymers are formed in openings in a hard mask, annealed and then etched, followed by etching of the underlying dielectric material. At least one sublithographic feature is formed according to this method. Also disclosed is an intermediate semiconductor structure in which at least one interconnect wiring feature has a dimension that is defined by a self-assembled block copolymer.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: August 3, 2010
    Assignee: International Business Machines Corporaiton
    Inventors: Wai-Kin Li, Haining S. Yang
  • Publication number: 20100187636
    Abstract: A semiconductor structure and a method of fabricating the same in which strain enhancement is achieved for both nFET and pFET devices is provided. In particular, the present invention provides at least one spacerless FET for stronger strain enhancement and defect reduction. The at least one spacerless FET can be a pFET, an nFET, or a combination thereof, with spacerless pFETs being particularly preferred since pFETs are generally fabricated to have a greater width than nFETs. The at least one spacerless FET allows to provide a stress inducing liner in closer proximity to the device channel than prior art structures including FETs having spacers. The spacerless FET is achieved without negatively affecting the resistance of the corresponding silicided source/drain diffusion contacts, which do not encroach underneath the spacerless FET.
    Type: Application
    Filed: April 6, 2010
    Publication date: July 29, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Haining S. Yang, Siddhartha Panda
  • Publication number: 20100178615
    Abstract: This invention provides a method for reducing tip-to-tip spacing between lines using a combination of photolithographic and copolymer self-assembling lithographic techniques. A mask layer is first formed over a substrate with a line structure. A trench opening of a width d is created in the mask layer. A layer of a self-assembling block copolymer is then applied over the mask layer. The block copolymer layer is annealed to form a single unit polymer block of a width or a diameter w which is smaller than d inside the trench opening. The single unit polymer block is selectively removed to form a single opening of a width or a diameter w inside the trench opening. An etch transfer process is performed using the single opening as a mask to form an opening in the line structure in the substrate.
    Type: Application
    Filed: January 12, 2009
    Publication date: July 15, 2010
    Applicant: International Business Machines Corporation
    Inventors: MATTHEW E. COLBURN, WAI-KIN LI, HAINING S YANG