Patents by Inventor Haining S. Yang

Haining S. Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090108356
    Abstract: A metal gate stack containing a metal layer having a mid-band-gap work function is formed on a high-k gate dielectric layer. A threshold voltage adjustment oxide layer is formed over a portion of the high-k gate dielectric layer to provide devices having a work function near a first band gap edge, while another portion of the high-k dielectric layer remains free of the threshold voltage adjustment oxide layer. A gate stack containing a semiconductor oxide based gate dielectric and a doped polycrystalline semiconductor material may also be formed to provide a gate stack having a yet another work function located near a second band gap edge which is the opposite of the first band gap edge. A dense circuit containing transistors of p-type and n-type with the mid-band-gap work function are formed in the region containing the threshold voltage adjustment oxide layer.
    Type: Application
    Filed: October 25, 2007
    Publication date: April 30, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Michael P. Chudzik, Rama Divakaruni, Geng Wang, Robert C. Wong, Haining S. Yang
  • Publication number: 20090098689
    Abstract: A semiconductor fuse and methods of making the same. The fuse includes a fuse element and a compressive stress liner that reduces the electro-migration resistance of the fuse element. The method includes forming a substrate, forming a trench feature in the substrate, depositing fuse material in the trench feature, depositing compressive stress liner material over the fuse material, and patterning the compressive stress liner material.
    Type: Application
    Filed: November 11, 2008
    Publication date: April 16, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chih-Chao YANG, Haining S. Yang
  • Patent number: 7504336
    Abstract: The present invention provides a method of fabricating semiconductor device comprising at least one field effect transistor (FET) having source and drain (S/D) metal silicide layers with intrinsic tensile or compressive stress. First, a metal layer containing a silicide metal M is formed over S/D regions of a FET, followed by a first annealing step to form S/D metal silicide layers that comprise a metal silicide of a first phase (MSix). A silicon nitride layer is then formed over the FET, followed by a second annealing step. During the second annealing step, the metal silicide is converted from the first phase (MSix) into a second phase (MSiy) with x<y. The metal silicide conversion causes either volumetric shrinkage or expansion in the S/D metal silicide layers of the FET, which in turn generates intrinsic tensile or compressive stress in the S/D metal silicide layers under confinement by the silicon nitride layer.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: March 17, 2009
    Assignee: International Business Machines Corporation
    Inventors: Robert J. Purtell, Henry K. Utomo, Yun-Yu Wang, Haining S. Yang
  • Publication number: 20090057818
    Abstract: An electrically programmable fuse comprising a cathode member, an anode member, and a link member, wherein the cathode member, the anode member, and the link member each comprise one of a plurality of materials operative to localize induced electromigration in the programmable fuse.
    Type: Application
    Filed: August 30, 2007
    Publication date: March 5, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Deok-kee Kim, Keith Kwong Hon Wong, Chih-Chao Yang, Haining S. Yang
  • Patent number: 7491585
    Abstract: A semiconductor fuse and methods of making the same. The fuse includes a fuse element and a compressive stress liner that reduces the electro-migration resistance of the fuse element. The method includes forming a substrate, forming a trench feature in the substrate, depositing fuse material in the trench feature, depositing compressive stress liner material over the fuse material, and patterning the compressive stress liner material.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: February 17, 2009
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Haining S. Yang
  • Publication number: 20090039512
    Abstract: A line trench is formed in a dielectric layer that may contain an interlayer dielectric material. A metal liner is formed on the sidewalls and the bottom surface of the line trench. A conductive metal is deposited within a remaining portion of the line trench at least up to a top surface of the dielectric layer and planarized to form a metal line in the line trench. The metal line is recessed by a recess etch below the top surface of the dielectric layer. A dielectric line cap or a metallic line cap is formed by deposition of a dielectric cap layer or a metallic cap layer, followed by planarization of the dielectric or metallic cap layer. The dielectric line cap or the metallic line cap applies a highly compressive stress on the underlying metal line, which increases electromigration resistance of the metal line.
    Type: Application
    Filed: August 8, 2007
    Publication date: February 12, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Haining S. Yang, Chih-Chao Yang, Keith Kwong Hon Wong
  • Publication number: 20090032886
    Abstract: A semiconductor structure and a method for forming the same. The method includes providing a semiconductor structure which includes a semiconductor substrate. The semiconductor substrate includes (i) a top substrate surface which defines a reference direction perpendicular to the top substrate surface and (ii) first and second semiconductor body regions. The method further includes forming (i) a gate divider region and (ii) a gate electrode layer on top of the semiconductor substrate. The gate divider region is in direct physical contact with gate electrode layer. A top surface of the gate electrode layer and a top surface of the gate divider region are essentially coplanar. The method further includes patterning the gate electrode layer resulting in a first gate electrode region and a second gate electrode region. The gate divider region does not overlap the first and second gate electrode regions in the reference direction.
    Type: Application
    Filed: July 30, 2007
    Publication date: February 5, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert C. Wong, Haining S. Yang
  • Publication number: 20090032959
    Abstract: Electrical fuses and resistors having a sublithographic lateral or vertical dimension are provided. A conductive structure comprising a conductor or a semiconductor is formed on a semiconductor substrate. At least one insulator layer is formed on the conductive structure. A recessed area is formed in the at least one insulator layer. Self-assembling block copolymers are applied into the recessed area and annealed to form a first set of polymer blocks and a second set of polymer blocks. The first set of polymer blocks are etched selective to the second set and the at least one insulator layer. Features having sublithographic dimensions are formed in the at least one insulator layer and/or the conductive structure. Various semiconductor structures having sublithographic dimensions are formed including electrical fuses and resistors.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 5, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles T. Black, Matthew E. Colburn, Timothy J. Dalton, Daniel C. Edelstein, Wai-Kin Li, Anthony K. Stamper, Haining S. Yang
  • Patent number: 7485508
    Abstract: Both sides of a semiconductor-on-insulator substrate are utilized to form MOSFET structures. After forming first type devices on a first semiconductor layer, a handle wafer is bonded to the top of a first middle-of-line dielectric layer. A lower portion of a carrier substrate is then removed to expose a second semiconductor layer and to form second type devices thereupon. Conductive vias may be formed through the buried insulator layer to electrically connect the first type devices and the second type devices. Use of block masks is minimized since each side of the buried insulator has only one type of devices. Two levels of devices are present in the structure and boundary areas between different types of devices are reduced or eliminated, thereby increasing packing density of devices. The same alignment marks may be used to align the wafer either front side up or back side up.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: February 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: Thomas W. Dyer, Haining S. Yang
  • Publication number: 20090026543
    Abstract: At least one recessed region having two parallel edges is formed in an insulator layer over a semiconductor layer such that the lengthwise direction of the recessed region coincides with optimal carrier mobility surfaces of the semiconductor material in the semiconductor layer for finFETs to be formed. Self-assembling block copolymers are applied within the at least one recessed region and annealed to form a set of parallel polymer block lines having a sublithographic width and containing a first polymeric block component. The pattern of sublithographic width lines is transferred into the semiconductor layer employing the set of parallel polymer block lines as an etch mask. Sublithographic width semiconductor fins thus formed may have sidewalls for optimal carrier mobility for p-type finFETs and n-type finFETs.
    Type: Application
    Filed: July 26, 2007
    Publication date: January 29, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Haining S. Yang
  • Publication number: 20090026574
    Abstract: An electrical fuse and a first dielectric layer thereupon are formed on a semiconductor substrate. Self-assembling block copolymers containing two or more different polymeric block components are applied into a recessed region surrounded by a dielectric template layer. The self-assembling block copolymers are then annealed to form a pattern of multiple circles having a sublithographic diameter. The pattern of multiple circles is transferred into the first dielectric layer by a reactive ion etch, wherein the portion of the first dielectric layer above the fuselink has a honeycomb pattern comprising multiple circular cylindrical holes. A second dielectric layer is formed over the circular cylindrical holes by a non-conformal chemical vapor deposition and sublithographic cavities are formed on the fuselink. The sublithographic cavities provide enhanced thermal insulation relative to dielectric materials to the fuselink so that the electrical fuse may be programmed with less programming current.
    Type: Application
    Filed: July 26, 2007
    Publication date: January 29, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Deok-kee Kim, Wai-Kin Li, Haining S. Yang
  • Publication number: 20090026523
    Abstract: A gate dielectric and a gate conductor layer are formed on sidewalls of at least one semiconductor fin. The gate conductor layer is patterned so that a gate electrode is formed on a first sidewall of a portion of the semiconductor fin, while a second sidewall on the opposite side of the first sidewall is not controlled by the gate electrode. A partially gated finFET, that is, a finFET with a gate electrode on the first sidewall and without a gate electrode on the second sidewall is thus formed. Conventional dual gate finFETs may be formed with the inventive partially gated finFETs on the same substrate to provide multiple finFETs having different on-current in the same circuit such as an SRAM circuit.
    Type: Application
    Filed: July 24, 2007
    Publication date: January 29, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert C. Wong, Haining S. Yang
  • Publication number: 20090029531
    Abstract: A method for fabricating a hybrid orientation substrate provides for: (1) a horizontal epitaxial augmentation of a masked surface semiconductor layer that leaves exposed a portion of a base semiconductor substrate; and (2) a vertical epitaxial augmentation of the exposed portion of the base semiconductor substrate. The resulting surface semiconductor layer and epitaxial surface semiconductor layer adjoin with an interface that is not perpendicular to the base semiconductor substrate. The method also includes implanting through the surface semiconductor layer and the epitaxial surface semiconductor layer a dielectric forming ion to provide a buried dielectric layer that separates the surface semiconductor layer and the epitaxial surface semiconductor layer from the base semiconductor substrate.
    Type: Application
    Filed: October 3, 2008
    Publication date: January 29, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Haining S. Yang, Henry K. Utomo, Judson R. Holt
  • Patent number: 7482652
    Abstract: A carbon nanotube based memory device comprises a set of three concentric carbon nanotubes having different diameters. The diameters of the three concentric carbon nanotubes are selected such that an inner carbon nanotube is semiconducting, and intershell electron transport occurs between adjacent carbon nanotubes. Source and drain contacts are made to the inner carbon nanotube, and a gate contact is made to the outer carbon nanotube. The carbon nanotube based memory device is programmed by storing electrons or holes in the middle carbon nanotube through intershell electron transport. Changes in conductance of the inner carbon nanotube due to the charge in the middle shell are detected to determine the charge state of the middle carbon nanotube. Thus, the carbon nanotube based memory device stores information in the middle carbon nanotube in the form of electrical charge.
    Type: Grant
    Filed: January 2, 2008
    Date of Patent: January 27, 2009
    Assignee: International Business Machines Corporation
    Inventor: Haining S. Yang
  • Patent number: 7482209
    Abstract: A method for fabricating a hybrid orientation substrate provides for: (1) a horizontal epitaxial augmentation of a masked surface semiconductor layer that leaves exposed a portion of a base semiconductor substrate; and (2) a vertical epitaxial augmentation of the exposed portion of the base semiconductor substrate. The resulting surface semiconductor layer and epitaxial surface semiconductor layer adjoin with an interface that is not perpendicular to the base semiconductor substrate. The method also includes implanting through the surface semiconductor layer and the epitaxial surface semiconductor layer a dielectric forming ion to provide a buried dielectric layer that separates the surface semiconductor layer and the epitaxial surface semiconductor layer from the base semiconductor substrate.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: January 27, 2009
    Assignee: International Business Machines Corporation
    Inventors: Haining S. Yang, Henry K. Utomo, Judson R. Holt
  • Publication number: 20090021338
    Abstract: An electrical fuse is formed on a semiconductor substrate and a first dielectric layer is formed over the electrical fuse. At least one opening is formed by lithographic methods and a reactive ion etch in the first dielectric layer down to a top surface of the electrical fuse or down to shallow trench isolation. A second dielectric layer is deposited by a non-conformal deposition. Thickness of the second dielectric layer on the sidewalls of the at least one opening increases with height so that at least one cavity encapsulated by the second dielectric layer is formed in the at least one opening. The at least one cavity provides enhanced thermal isolation of the electrical fuse since the cavity provides superior thermal isolation than a dielectric material.
    Type: Application
    Filed: July 18, 2007
    Publication date: January 22, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Deok-kee Kim, Wai-Kin Li, Haining S. Yang
  • Publication number: 20090014798
    Abstract: A FinFET SRAM transistor device includes transistors formed on fins with each transistor including a semiconductor channel region within a fin plus a source region and a drain region extending within the fin from opposite sides of the channel region with fin sidewalls having a gate dielectric formed thereon. Bilateral transistor gates extend from the gate dielectric. An asymmetrically doped FinFET transistor has source/drain regions doped with a first dopant type, but the asymmetrically doped FinFET transistor include at least one of the bilateral transistor gate electrode regions on one side of at least one of the fins counterdoped with respect to the first dopant type. The finFET transistors are connected in a six transistor SRAM circuit including two PFET pull-up transistors, two NFET pull down transistors and two NFET passgate transistors.
    Type: Application
    Filed: July 11, 2007
    Publication date: January 15, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huilong Zhu, Haining S. Yang
  • Publication number: 20090001045
    Abstract: Methods of patterning a self-assembly nano-structure and forming a porous dielectric are disclosed. In one aspect, the method includes providing a hardmask over an underlying layer; predefining an area with a photoresist on the hardmask that is to be protected during the patterning; forming a layer of the copolymer over the hardmask and the photoresist; forming the self-assembly nano-structure from the copolymer; and etching to pattern the self-assembly nano-structure.
    Type: Application
    Filed: June 27, 2007
    Publication date: January 1, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kuang-Jung Chen, Wai-Kin Li, Haining S. Yang
  • Publication number: 20090001466
    Abstract: A method is provided of forming a conductive via for contacting a bulk semiconductor region of a semiconductor-on-insulator (“SOI”) substrate. A first opening is formed in a conformal layer overlying a trench isolation region, where the trench isolation region shares an edge with the SOI layer. A dielectric layer then is deposited atop the conformal layer and the trench isolation region, after which a second opening is formed which is aligned with the first opening, the second opening extending through the dielectric layer to expose the bulk semiconductor region. Finally, the conductive via is formed in the second opening.
    Type: Application
    Filed: June 28, 2007
    Publication date: January 1, 2009
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.
    Inventors: Haining S. Yang, Ramachandra Divakaruni, Byeong Y. Kim, Junedong Lee, Gaku Sudo
  • Publication number: 20090001506
    Abstract: A semiconductor fuse structure comprises an anode connected to a first end of a fuse link, a cathode connected to a second end of the fuse link opposite the first end of the fuse link, a compressive (nitride) liner covering the anode, and a tensile (nitride) liner covering the cathode. The compressive liner and the tensile liner are positioned to cause a net stress gradient between the cathode and the anode, wherein the net stress gradient promotes electromigration from the cathode and the fuse link to the anode.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 1, 2009
    Inventors: Deok-Kee Kim, Haining S. Yang