Patents by Inventor Haisheng Rong

Haisheng Rong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230204877
    Abstract: Technologies for beam expansion and collimation for photonic integrated circuits (PICs) are disclosed. In one embodiment, an ancillary die is bonded to a PIC die. Vertical couplers in the PIC die direct light from waveguides to flat mirrors on a top side of the ancillary die. The flat mirrors reflect the light towards curved mirrors defined in the bottom surface of the ancillary die. The curved mirrors collimate the light from the waveguides. In another embodiment, a cavity is formed in a PIC die, and curved mirrors are formed in the cavity. Light beams from waveguides in the PIC die are directed to the curved mirrors, which collimate the light beams.
    Type: Application
    Filed: December 23, 2021
    Publication date: June 29, 2023
    Applicant: Intel Corporation
    Inventors: John M. Heck, Haisheng Rong, Harel Frish, Ankur Agrawal, Boping Xie, Randal S. Appleton, Hari Mahalingam, Alexander Krichevsky, Pooya Tadayon, Ling Liao, Eric J. M. Moret
  • Patent number: 11639997
    Abstract: Technology for light detection and ranging (LIDAR) sensor can include an optical signal source, an optical modulation array and optical detector on the same integrated circuit (IC) chip, multi-chip module (MCM) or similar solid-state package.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: May 2, 2023
    Assignee: Intel Corporation
    Inventors: Avi Feshali, Haisheng Rong
  • Publication number: 20230020440
    Abstract: Embodiments may include or relate to an optical coupler. The optical coupler may include a silicon nitride (SiN) waveguide. The waveguide may be formed by placing SiN on an epitaxially grown silicon structure that is then removed subsequent to placement of the SiN. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 28, 2022
    Publication date: January 19, 2023
    Inventors: John Heck, Harel Frish, Hari Mahalingam, Haisheng Rong
  • Publication number: 20220413213
    Abstract: Silicon photonic integrated circuit (PIC) on a multi-zone semiconductor on insulator (SOI) substrate having at least a first zone and a second zone. Various optical devices of the PIC may be located above certain substrate zones that are most suitable. A first length of a photonic waveguide structure comprises the crystalline silicon and is within the first zone, while a second length of the waveguide structure is within the second zone. Within a first zone, the crystalline silicon layer is spaced apart from an underlying substrate material by a first thickness of dielectric material. Within the second zone, the crystalline silicon layer is spaced apart from the underlying substrate material by a second thickness of the dielectric material.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Applicant: Intel Corporation
    Inventors: Harel Frish, John Heck, Randal Appleton, Stefan Meister, Haisheng Rong, Joshua Keener, Michael Favaro, Wesley Harrison, Hari Mahalingam, Sergei Sochava
  • Publication number: 20220182149
    Abstract: Embodiments herein relate to techniques for baseline wander (BLW) compensation. The technique may include identifying a data stream that is to be modulated by a ring modulator of an optical transmitter, wherein the data stream has a frequency operable to cause thermal-based BLW of an optical output of the optical transmitter. The technique may further include adjusting a time-varying direct current (DC) voltage bias of the ring modulator based on the frequency of the data stream. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: February 21, 2022
    Publication date: June 9, 2022
    Inventors: Taehwan KIM, Hao LI, Meer Nazmus SAKIB, Haisheng RONG, Ganesh BALAMURUGAN, Sanjeev GUPTA, Jin HONG, Nikolai FEDIAKINE
  • Publication number: 20220120967
    Abstract: An apparatus comprising a substrate; a waveguide above the substrate; and an undercut into the substrate, the undercut beneath at least a portion of the waveguide, wherein a magnitude of a maximum length of the undercut is lower than a magnitude of a maximum depth of the undercut.
    Type: Application
    Filed: December 23, 2021
    Publication date: April 21, 2022
    Applicant: Intel Corporation
    Inventors: Harel Frish, John M. Heck, Duanni Huang, Hari Mahalingam, Haisheng Rong
  • Publication number: 20220011408
    Abstract: In one embodiment, an apparatus includes: a waveguide formed of a PN junction, the waveguide to propagate optical power, the PN junction having a P region adjacent to an N region; and a silicon monitor photodetector formed of the PN junction and in-line with the waveguide to measure the optical power. The silicon monitor photodetector may further be formed of a P-doped region adjacent to the P region and an N-doped region adjacent to the N region. Other embodiments are described and claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: January 13, 2022
    Inventors: Meer Nazmus Sakib, Ranjeet Kumar, Haisheng Rong, Chaoxuan Ma
  • Patent number: 11175451
    Abstract: Embodiments include apparatuses, methods, and systems including a semiconductor photonic device having a waveguide disposed above a substrate. The waveguide has a first section including amorphous silicon with a first refractive index, and a second section including crystalline silicon with a second refractive index different from the first refractive index. The semiconductor photonic device further includes a heat element at a vicinity of the first section of the waveguide. The heat element is arranged to generate heat to transform the amorphous silicon of the first section of the waveguide to partially or completely crystallized crystalline silicon with a third refractive index. The amorphous silicon in the first section may be formed with silicon lattice defects caused by an element implanted into the first section. Other embodiments may also be described and claimed.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: November 16, 2021
    Assignee: Intel Corporation
    Inventors: Hasitha Jayatilleka, Harel Frish, Ranjeet Kumar, Haisheng Rong, John Heck
  • Patent number: 11143818
    Abstract: Embodiments include apparatuses, methods, and systems including a laser device having a 1×3 MMI coupler within a semiconductor layer. A front arm is coupled to the MMI coupler and terminated by a front reflector. In addition, a coarse tuning arm is coupled to the MMI coupler and terminated by a first back reflector for coarse wavelength tuning, a fine tuning arm is coupled to the MMI coupler and terminated by a second back reflector for fine wavelength tuning, and a SMSR and power tuning arm is coupled to the MMI coupler and terminated by a third back reflector. A gain region is above the front arm and above the semiconductor layer. Other embodiments may also be described and claimed.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: October 12, 2021
    Assignees: INTEL CORPORATION, REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Meer Nazmus Sakib, Guan-Lin Su, John Heck, Haisheng Rong, Ming C. Wu
  • Patent number: 11137283
    Abstract: Embodiments of the present disclosure are directed toward techniques and configurations for a photonic apparatus with a photodetector with bias control to provide substantially constant responsivity. The apparatus includes a first photodetector, to receive an optical input and provide a corresponding electrical output; a second photodetector coupled with the first photodetector, wherein the second photodetector is free from receipt of the optical input; and circuitry coupled with the first and second photodetectors, to generate a bias voltage, based at least in part on a dark current generated by the second photodetector in an absence of the optical input, and provide the generated bias voltage to the first photodetector. The first photodetector is to provide a substantially constant ratio of the electrical output to optical input in response to the provision of the generated bias voltage. Additional embodiments may be described and claimed.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: October 5, 2021
    Assignee: Intel Corporation
    Inventors: Ganesh Balamurugan, Haisheng Rong, Meer Nazmus Sakib, Hao Li
  • Publication number: 20210288470
    Abstract: In one embodiment, a distributed feedback laser includes a laser comprising a waveguide, the waveguide having a variable width from a first end to a second end, the laser to generate optical energy of a plurality of lasing wavelengths. Other embodiments are described and claimed.
    Type: Application
    Filed: June 3, 2021
    Publication date: September 16, 2021
    Inventors: Ranjeet Kumar, Haisheng Rong, Jie Sun
  • Publication number: 20210175974
    Abstract: Embodiments described herein may be related to apparatuses, processes, and techniques related to fully integrated optical coherent modulators on a silicon chip. These coherent modulators may be used to enable transmitters, receivers, transceivers, tunable lasers and other optical or electro-optical devices to be integrated on a silicon chip. In embodiments, the optical coherent modulators may be based on differential microring modulators that may be nested in a Mach-Zehnder Interferometer (MZI) configuration. Embodiments may also be directed to a miniaturized and fully integrated coherent modulators, which can enable terabit per second (Tbps) transceivers in a small form factor based on coherent modulation on a silicon chip. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: February 19, 2021
    Publication date: June 10, 2021
    Inventors: Aliasghar EFTEKHAR, Duanni HUANG, Meer Nazmus SAKIB, Haisheng RONG, Ansheng LIU, Peicheng LIAO, Hao LI
  • Publication number: 20210149115
    Abstract: The present disclosure is directed to photonic wavelength division multiplexing (WDM) receivers with polarization diversity and/or low reflectance. In embodiments, a WDM receiver is provided with a splitter, a plurality of waveguides and a plurality of photodetectors in series. The waveguides having particular equal path lengths relationship from the splitter to respective ones of the photodetectors. In other embodiments, the WDM receiver is provided with a splitter, a looped waveguide, a plurality of photodetectors, and a plurality of variable optical attenuators (VOAs). The VOAs are configured to suppress reflection of signal beams back to the transmitter. In various embodiments, the WDM receiver is a receiver sub-assembly of a silicon photonic transceiver disposed in a silicon package. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 23, 2020
    Publication date: May 20, 2021
    Inventors: Duanni Huang, Saeed Fathololoumi, Meer Nazmus Sakib, Mohammad Montazeri Najafabadi, Chaoxuan Ma, David Hui, Taehwan Kim, Ling Liao, Hao Li, Ganesh Balamurugan, Haisheng Rong, Aliasghar Eftekhar
  • Publication number: 20210119710
    Abstract: Embodiments described herein may be related to apparatuses, processes, and techniques related to coherent optical receivers, including coherent receivers with integrated all-silicon waveguide photodetectors and tunable local oscillators implemented within CMOS technology. Embodiments are also directed to tunable silicon hybrid lasers with integrated temperature sensors to control wavelength. Embodiments are also directed to post-process phase correction of optical hybrid and nested I/Q modulators. Embodiments are also directed to demultiplexing photodetectors based on multiple microrings. In embodiments, all components may be implements on a silicon substrate. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 23, 2020
    Publication date: April 22, 2021
    Inventors: Meer Nazmus Sakib, Peicheng Liao, Ranjeet Kumar, Duanni Huang, Haisheng Rong, Harel Frish, John Heck, Chaoxuan Ma, Hao Li, Ganesh Balamurugan
  • Publication number: 20210072784
    Abstract: Embodiments of the present disclosure describe techniques and configurations for a nonlinear optical device used to construct an optical neural network (ONN) with an arbitrary number of layers of matrix multipliers. The nonlinear optical device includes a waveguide to receive optical input and a gain medium coupled with the waveguide, to amplify or attenuate the received optical input, to provide an output that is amplified in a nonlinear manner in response to the optical input reaching saturation, where the nonlinearly amplified output is to provide a nonlinear activation function for an ONN. Additional embodiments may be described and claimed.
    Type: Application
    Filed: November 17, 2020
    Publication date: March 11, 2021
    Inventors: Wenhua Lin, Haisheng Rong, Jin Hong
  • Publication number: 20210055416
    Abstract: Technology for light detection and ranging (LIDAR) sensor can include an optical signal source, an optical modulation array and optical detector on the same integrated circuit (IC) chip, multi-chip module (MCM) or similar solid-state package.
    Type: Application
    Filed: October 16, 2020
    Publication date: February 25, 2021
    Inventors: Avi Feshali, Haisheng Rong
  • Publication number: 20210057880
    Abstract: Embodiments of the present disclosure are directed to multi-wavelength laser generator may produce light with a frequency comb having equally spaced frequency lines. In various embodiments, the laser generator includes first, a semiconductor gain element is used to provide gain to the laser being generated. Second, a ring resonator filter, or ring filter, is used to select the wavelength comb spacing. Third, a narrow-band DBR or narrow-band mirror is used to select the number of wavelengths that lase. Fourth, a wide-band or narrow-band mirror is used to provide optical feedback and to form the optical cavity. Fifth, a phase tuner section is used to align the cavity modes with the ring resonances (i.e. the ring filter modes) in order to reduce or minimize the modal loss. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 25, 2021
    Inventors: Karan Mehta, Richard Jones, Ranjeet Kumar, Guan-Lin Su, Duanni Huang, Haisheng Rong
  • Patent number: 10908286
    Abstract: Technology for light detection and ranging (LIDAR) sensor can include an optical signal source, an optical modulation array and optical detector on the same integrated circuit (IC) chip, multi-chip module (MCM) or similar solid-state package.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: February 2, 2021
    Assignee: Intel Corporation
    Inventors: Avi Feshali, Haisheng Rong
  • Publication number: 20210006044
    Abstract: Embodiments of the present disclosure are directed to a silicon photonics integrated apparatus that includes an input to receive an optical signal, a splitter optically coupled to the input to split the optical signal at a first path and a second path, a polarization beam splitter and rotator (PBSR) optically coupled with the first path or the second path, and a semiconductor optical amplifier (SOA) optically coupled with the first path or the second path and disposed between the splitter and the PBSR. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 17, 2020
    Publication date: January 7, 2021
    Inventors: Jin Hong, Ranjeet Kumar, Meer Nazmus Sakib, Haisheng Rong, Kimchau Nguyen, Mengyuan Huang, Aliasghar Eftekhar, Christian Malouin, Siamak Amiralizadeh Asl, Saeed Fathololoumi, Ling Liao, Yuliya Akulova, Olufemi Dosunmu, Ansheng Liu
  • Patent number: 10877352
    Abstract: Embodiments include apparatuses, methods, and systems including a semiconductor photonic device having a substrate, a waveguide disposed above the substrate, a phase change layer disposed above the waveguide, and a heater disposed above the phase change layer. The waveguide has a modifiable refractive index based at least in part on a state of a phase change material included in the phase change layer. The phase change material of the phase change layer is in a first state of a set of states, and the waveguide has a first refractive index determined based on the first state of the phase change material. The heater is to generate heat to transform the phase change material to a second state of the set of states, and the waveguide has a second refractive index determined based on the second state of the phase change material. Other embodiments may also be described and claimed.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: December 29, 2020
    Assignee: Intel Corporation
    Inventors: John Heck, Harel Frish, Derchang Kau, Charles Dennison, Haisheng Rong, Jeffrey Driscoll, Jonathan K. Doylend, George A. Ghiurcan, Michael E. Favaro