Patents by Inventor Haizhou Yin

Haizhou Yin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11976348
    Abstract: The present invention relates to a carbide tool cleaning and coating production line and a method, including a cleaning device including a support frame, a cleaning mechanism and a drying mechanism are sequentially disposed under the support frame connected to a moving mechanism, the moving mechanism is connected to a lifting mechanism being capable of being connected to a tool fixture bracket being configured to accommodate the tool fixture; a coating device including a coating chamber which a plane target mechanism and a turntable assembly disposed in, the turntable assembly is capable of being connected to a plurality of tool fixtures being capable of rotating around an axial line of the coating chamber under the driving of the turntable assembly and rotating around an axial line thereof at the same time; and, a manipulator being disposed between the cleaning device and the coating device.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: May 7, 2024
    Assignees: QINGDAO UNIVERSITY OF TECHNOLOGY, NINGBO SANHAN ALLOY MATERIAL CO., LTD.
    Inventors: Yanbin Zhang, Liang Luo, Lizhi Tang, Changhe Li, Weixi Ji, Binhui Wan, Shuo Yin, Huajun Cao, Bingheng Lu, Xin Cui, Mingzheng Liu, Teng Gao, Jie Xu, Huiming Luo, Haizhou Xu, Min Yang, Huaping Hong, Xiaoming Wang, Yuying Yang, Haogang Li, Wuxing Ma, Shuai Chen
  • Patent number: 11951618
    Abstract: A multi-procedure integrated automatic production line for hard alloy blades under robot control is provided. The production line includes a rail-guided robot. A cutter passivation device and a blade cleaning and drying device are arranged on one side of the rail-guided robot. A blade-coating transfer table, a blade coating device, a blade boxing transfer table, a blade-tooling dismounting device and a blade boxing device are sequentially arranged on another side of the rail-guided robot. The blade-tooling dismounting device is arranged on one side of the blade boxing transfer table. The production line further includes squirrel-cage toolings for carrying the blades. The squirrel-cage tooling that are loaded with the blades can run among the cutter passivation device, the blade cleaning and drying device, the blade-coating transfer table and the blade boxing transfer table. The blades after being treated through the blade-tooling dismounting device are sent to the blade boxing device.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: April 9, 2024
    Assignees: Qingdao University of Technology, Ningbo Sanhan Alloy Material Co., Ltd.
    Inventors: Changhe Li, Teng Gao, Liang Luo, Lizhi Tang, Yanbin Zhang, Weixi Ji, Binhui Wan, Shuo Yin, Huajun Cao, Bingheng Lu, Xin Cui, Mingzheng Liu, Jie Xu, Huiming Luo, Haizhou Xu, Min Yang, Huaping Hong, Yuying Yang, Haogang Li, Wuxing Ma, Shuai Chen
  • Patent number: 11728192
    Abstract: An optical inspection is performed to detect potential defects within integrated circuit devices and a first electron-based inspection of less than all of the potential defects is performed to identify primary actual defects. A process window of manufacturing parameter settings used to manufacture the integrated circuit devices is identified and the integrated circuit devices manufactured using the manufacturing parameter settings inside the process window have less than a threshold number of the primary actual defects. To identify additional actual defects a second electron-based inspection is performed that is limited to selected ones of the potential defects in the integrated circuit devices that were manufactured using the manufacturing parameter settings inside the process window but were uninspected in the first electron-based inspection.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: August 15, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Chenlong Miao, Haizhou Yin, Michael J. Wojtowecz
  • Publication number: 20230024266
    Abstract: An optical inspection is performed to detect potential defects within integrated circuit devices and a first electron-based inspection of less than all of the potential defects is performed to identify primary actual defects. A process window of manufacturing parameter settings used to manufacture the integrated circuit devices is identified and the integrated circuit devices manufactured using the manufacturing parameter settings inside the process window have less than a threshold number of the primary actual defects. To identify additional actual defects a second electron-based inspection is performed that is limited to selected ones of the potential defects in the integrated circuit devices that were manufactured using the manufacturing parameter settings inside the process window but were uninspected in the first electron-based inspection.
    Type: Application
    Filed: July 22, 2021
    Publication date: January 26, 2023
    Applicant: GLOBALFOUNDRIES U.S. Inc.
    Inventors: Chenlong Miao, Haizhou Yin, Michael J. Wojtowecz
  • Publication number: 20220196580
    Abstract: The embodiments herein relate to defect inspection methods of semiconductor wafers during the manufacturing process. According to an aspect of the present disclosure, a defect inspection system is provided. The defect inspection system includes a first inspection system, pattern simulator software, and a second inspection system. The first inspection system is capable of determining a plurality of defect locations on an article. The pattern simulator software is capable of generating a set of simulated pattern features from the plurality of defect locations. The second inspection system is capable of providing a higher graphical resolution of defects than the first inspection at the defect locations corresponding to the set of simulated pattern features.
    Type: Application
    Filed: December 21, 2020
    Publication date: June 23, 2022
    Inventors: HAIZHOU YIN, CHENLONG MIAO, SHAO WEN GAO, MICHAEL WOJTOWECZ, TAMER DESOUKY
  • Patent number: 11348870
    Abstract: Interconnect structures and methods of fabricating an interconnect structure. A first interconnect and a second interconnect extend in a first direction in a interlayer dielectric layer and are spaced apart from each other. A third interconnect is arranged in the interlayer dielectric layer to connect the first interconnect with the second interconnect. The first interconnect and the second interconnect have a first width, and the third interconnect has a second width that is less than the first width.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: May 31, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Jiehui Shu, Xiaoqiang Zhang, Haizhou Yin, Moosung M. Chae, Jinping Liu, Hui Zang
  • Publication number: 20200335435
    Abstract: Interconnect structures and methods of fabricating an interconnect structure. A first interconnect and a second interconnect extend in a first direction in a interlayer dielectric layer and are spaced apart from each other. A third interconnect is arranged in the interlayer dielectric layer to connect the first interconnect with the second interconnect. The first interconnect and the second interconnect have a first width, and the third interconnect has a second width that is less than the first width.
    Type: Application
    Filed: July 1, 2020
    Publication date: October 22, 2020
    Inventors: Jiehui Shu, Xiaoqiang Zhang, Haizhou Yin, Moosung M. Chae, Jinping Liu, Hui Zang
  • Patent number: 10784195
    Abstract: Interconnect structures and methods of fabricating an interconnect structure. A first interconnect and a second interconnect extend in a first direction in a interlayer dielectric layer and are spaced apart from each other. A third interconnect is arranged in the interlayer dielectric layer to connect the first interconnect with the second interconnect. The first interconnect and the second interconnect have a first width, and the third interconnect has a second width that is less than the first width.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: September 22, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Jiehui Shu, Xiaoqiang Zhang, Haizhou Yin, Moosung M. Chae, Jinping Liu, Hui Zang
  • Publication number: 20190326209
    Abstract: Interconnect structures and methods of fabricating an interconnect structure. A first interconnect and a second interconnect extend in a first direction in a interlayer dielectric layer and are spaced apart from each other. A third interconnect is arranged in the interlayer dielectric layer to connect the first interconnect with the second interconnect. The first interconnect and the second interconnect have a first width, and the third interconnect has a second width that is less than the first width.
    Type: Application
    Filed: April 23, 2018
    Publication date: October 24, 2019
    Inventors: Jiehui Shu, Xiaoqiang Zhang, Haizhou Yin, Moosung M. Chae, Jinping Liu, Hui Zang
  • Patent number: 10269919
    Abstract: A semiconductor device structure is provided. The semiconductor device includes a semiconductor substrate, a first device, and a second device. Each of the first and second devices includes a gate extending in a first direction, source/drain regions respectively formed on opposite first and second sides of the gate, dielectric spacers formed respectively on outer sidewalls of the gate on the first side and the second side, and conductive spacers serving contacts to the source/drain regions and formed respectively on outer sidewalls of the respective gate spacers. A second direction from the source/drain region on the first side to the source/drain region on the second side crosses the first direction.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: April 23, 2019
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Qingqing Liang, Haizhou Yin
  • Patent number: 10096717
    Abstract: The present disclosure discloses a MOSFET and a method for manufacturing the same, wherein the MOSFET comprises: an SOI wafer comprising a semiconductor substrate, a buried insulating layer on the semiconductor substrate, and a semiconductor layer on the buried insulating layer; a gate stack on the semiconductor layer; a source region and a drain region in the semiconductor layer on both sides of the gate stack; and a channel region in the semiconductor layer and located between the source region and the drain region, wherein the MOSFET further comprises a back gate which is located in the semiconductor substrate and has a first doped region as a lower portion of the back gate and a second doped region as an upper portion of the back gate, and the second doped region of the back gate is self-aligned with the gate stack. The MOSFET can adjust a threshold voltage by changing doping type and doping concentration of the back gate.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: October 9, 2018
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Huilong Zhu, Qingqing Liang, Haizhou Yin, Zhijiong Luo
  • Patent number: 10008602
    Abstract: A semiconductor device and a method of manufacturing the same are provided, wherein an example method may include: forming a first semiconductor layer and a second semiconductor layer sequentially on a substrate; patterning the second semiconductor layer and the first semiconductor layer to form a fin; forming an isolation layer on the substrate, wherein the isolation layer exposes a portion of the first semiconductor layer; forming a sacrificial gate stack crossing over the fin on the isolation layer; selectively etching the second semiconductor layer with the sacrificial gate stack as a mask, to expose the first semiconductor layer; selectively etching the first semiconductor layer, to form a void beneath the second semiconductor layer; filling the void with a dielectric material; forming a third semiconductor layer on the substrate, to form source/drain regions; and forming a gate stack to replace the sacrificial gate stack.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: June 26, 2018
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Huilong Zhu, Miao Xu, Haizhou Yin, Qingqing Liang
  • Patent number: 9853153
    Abstract: The present invention provides a method of manufacturing a fin field effect transistor, comprising: providing an SOI substrate comprising a substrate layer (100), a BOX layer (120) and an SOI layer (130); forming a basic fin structure from an SOI layer; forming source/drain regions (110) on both sides of the basic fin structure; forming a fin structure between the source/drain regions (110) from a basic fin structure; and forming a gate stack across the fin structure. The method of manufacturing a fin field effect transistor provided in the present invention can integrate a high-k gate dielectric layer, a metal gate, and stressed source/drain regions into the fin field effect transistor to enhance the performance of the semiconductor device.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: December 26, 2017
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Huilong Zhu, Zhijiong Luo, Haizhou Yin, Qingqing Liang
  • Publication number: 20170288037
    Abstract: A semiconductor device structure is provided. The semiconductor device includes a semiconductor substrate, a first device, and a second device. Each of the first and second devices includes a gate extending in a first direction, source/drain regions respectively formed on opposite first and second sides of the gate, dielectric spacers formed respectively on outer sidewalls of the gate on the first side and the second side, and conductive spacers serving contacts to the source/drain regions and formed respectively on outer sidewalls of the respective gate spacers. A second direction from the source/drain region on the first side to the source/drain region on the second side crosses the first direction.
    Type: Application
    Filed: June 22, 2017
    Publication date: October 5, 2017
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Qingqing Liang, Haizhou Yin
  • Patent number: 9716175
    Abstract: A quasi-nanowire transistor and a method of manufacturing the same are provided, the quasi-nanowire transistor comprising: providing an SOI substrate comprising a substrate layer (100), a BOX layer (120) and an SOI layer (130); forming a basic fin structure on the SOI layer, the basic fin structure comprising at least one silicon/silicon-germanium stack; forming source/drain regions (110) on both sides of the basic fin structure; forming a quasi-nanowire fin from a basic fin structure and an SOI layer thereunder; and forming a gate stack across the quasi-nanowire fin. The method can effectively control gate length characteristics. A semiconductor structure formed by the above method is also provided.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: July 25, 2017
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Huilong Zhu, Qingqing Liang, Haizhou Yin, Zhijiong Luo
  • Patent number: 9711612
    Abstract: A semiconductor device structure and a method for fabricating the same. A method for fabricating semiconductor device structure includes forming gate lines on a semiconductor substrate; forming gate sidewall spacers surrounding the gate lines; forming respective source/drain regions in the semiconductor substrate and on either side of the respective gate lines; forming conductive sidewall spacers surrounding the gate sidewall spacers; and cutting off the gate lines, the gate sidewall spacers and the conductive sidewall spacers at predetermined positions, in which the cut gate lines are electrically isolated gates, and the cut conductive sidewall spacers are electrically isolated lower contacts. The method is applicable to the manufacture of contacts in integrated circuits.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: July 18, 2017
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Qingqing Liang, Haizhou Yin
  • Patent number: 9691899
    Abstract: A semiconductor structure is provided, comprising a substrate (130), a support structure (131), a base region (100), a gate stack, a spacer (240), and a source/drain region, wherein the gate stack is located above the base region (100), and the base region (100) is supported above the substrate (130) by the support structure (131), wherein the support structure (131) has a sigma-shaped lateral cross-section; an isolation structure (123) is formed below edges on both sides of the base region (100), wherein a portion of the isolation structure (123) is connected to the substrate (130); a cavity (112) is formed between the isolation structure (123) and the support structure (131); and a source/drain region is formed on both sides of the base region (100) and the isolation structure (123). Accordingly, a method for manufacturing the semiconductor structure is also provided.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: June 27, 2017
    Inventors: Huilong Zhu, Haizhou Yin, Zhijiong Luo
  • Patent number: 9691878
    Abstract: Provided is a method for manufacturing a MOSFET, including: forming a shallow trench isolation (STI) in a semiconductor substrate to define an active region for the MOSFET; performing etching with the STI as a mask, to expose a surface of the semiconductor substrate, and to protrude a portion of the STI with respect to the surface of the semiconductor substrate, resulting in a protruding portion; forming a first spacer on sidewalls of the protruding portion; forming a gate stack on the semiconductor substrate; forming a second spacer surrounding the gate stack; forming openings in the semiconductor substrate with the STI, the gate stack, the first spacer and the second spacer as a mask; epitaxially growing a semiconductor layer with a bottom surface and sidewalls of each of the openings as a growth seed layer; and performing ion implantation into the semiconductor layer to form source and drain regions.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: June 27, 2017
    Assignee: Institute of Microelectronics, Chinese Academy of Science
    Inventors: Haizhou Yin, Huilong Zhu, Changliang Qin, Huaxiang Yin
  • Patent number: 9653550
    Abstract: A MOSFET structure and a method for manufacturing the same are disclosed. The method comprises: a. providing a substrate (100); b. forming a silicon germanium channel layer (101), a dummy gate structure (200) and a sacrificial spacer (102); c. removing the silicon germanium channel layer and portions of the substrate which are not covered by the dummy gate structure (200) and located under both sides of the dummy gate structure 200, so as to form vacancies (201); d. selectively epitaxially growing a first semiconductor layer (300) on the semiconductor structure to fill bottom and sidewalls of the vacancies (201); and e. removing the sacrificial spacer (102) and filling a second semiconductor layer (400) in the vacancies which are not filled by the first semiconductor layer (300). In the semiconductor structure of the present disclosure, carrier mobility in the channel can be increased, negative effects induced by the short channel effects can be suppressed, and device performance can be enhanced.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: May 16, 2017
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventor: Haizhou Yin
  • Patent number: 9640660
    Abstract: A method of fabricating an asymmetric FinFET is provided in the invention, comprising: a. providing a substrate (101); b. forming a fin (102) on the substrate (101), wherein the width of the fin (102) is defined as a second channel thickness; c. forming a shallow trench isolation; d. forming a sacrificial gate stack on the top surface and sidewalls of the channel which is in the middle of the fin, and forming source/drain regions in both ends of the fin; e. depositing an interlayer dielectric layer to cover the sacrificial gate stack and the source/drain regions, planarizing the interlayer dielectric layer to expose sacrificial gate stack; f. removing the sacrificial gate stack to expose the channel; g. forming an etch-stop layer (106) on top of the channel; h. covering a photoresist film (400) on a portion of the semiconductor structure near the source region; i.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: May 2, 2017
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Haizhou Yin, Keke Zhang