Patents by Inventor Haizhou Yin

Haizhou Yin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9608064
    Abstract: Provided is a MOSFET, comprising: a substrate (100); a gate stack (500) on the substrate (100); source/drain regions (305) in the substrate on both sides of the gate stack (500); an interlayer dielectric layer (400) covering the source/drain regions; and source/drain extension regions (205) under edges on both sides of the gate stack (500); wherein insulators, which are not connected each other, are formed beneath the source/drain extension regions (205) under edges on both sides of the gate stack (500). By means of the MOSFET in the present disclosure, negative effects induced by DIBL on device performance can be effectively reduced.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: March 28, 2017
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Haizhou Yin, Rui Li
  • Patent number: 9583622
    Abstract: The present invention discloses a semiconductor structure and a method for manufacturing the same, which comprises providing a substrate, and forming a stress layer, a buried oxide layer, and an SOI layer on the substrate; forming a doped region of the stress layer arranged in a specific position in the stress layer; forming an oxide layer and a nitride layer on the SOI layer, and forming a first trench that etches the nitride layer, the oxide layer, the SOI layer, and the buried oxide layer, and stops on the upper surface of the stress layer, and exposes at least part of the doped region of the stress layer; forming a cavity by wet etching through the first trench to remove the doped region of the stress layer; forming a polycrystalline silicon region of the stress layer and a second trench by filling the cavity with polycrystalline silicon and etching back; forming an isolation region by filling the second trench.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: February 28, 2017
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Zhijiong Luo, Haizhou Yin, Qingqing Liang
  • Patent number: 9576802
    Abstract: A method for manufacturing a semiconductor device is disclosed. The method comprises: forming a T-shape dummy gate structure on the substrate; removing the T-shape dummy gate structure and retaining a T-shape gate trench; forming a T-shape metal gate structure by filling a metal layer in the T-shape gate trench. According to the semiconductor device manufacturing method disclosed in the present application, the overhang phenomenon and the formation of voids are avoided in the subsequent metal gate filling process by forming a T-shape dummy gate and a T-shape gate trench, and the device performance is improved.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: February 21, 2017
    Inventors: Haizhou Yin, Huilong Zhu, Keke Zhang
  • Patent number: 9577074
    Abstract: A method of manufacturing a FinFET device is provided, comprising: a. providing a substrate (100); b. forming a fin (200) on the substrate; c. forming an shallow trench isolation structure (300) on the substrate; d. forming an sacrificial gate stack on the isolation structure, wherein the sacrificial gate stack intersects the fin; e. forming source/drain doping regions by ion implantation into the fin; f. depositing an interlayer dielectric layer (400) on the substrate; g. removing the sacrificial gate stack to form a sacrificial gate vacancy; h. forming an doped region (201) under the sacrificial gate vacancy; i. etching the shallow trench isolation structure (300) under the sacrificial gate vacancy until the top surface of the shallow trench isolation structure (300) levels with the bottom surface of the source/drain doping regions; j. forming a new gate stack in the sacrificial gate vacancy.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: February 21, 2017
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Yunfei Liu, Haizhou Yin, Keke Zhang
  • Patent number: 9548317
    Abstract: The present invention provides a method for manufacturing a semiconductor structure, which comprises following steps: providing a substrate, which comprises upwards in order a base layer, a buried isolation layer, a buried ground layer, an ultra-thin insulating buried layer and a surface active layer; implementing ion implantation doping to the buried ground layer; forming a gate stack, sidewall spacers and source/drain regions on the substrate; forming a mask layer on the substrate that covers the gate stack and the source/drain regions, and etching the mask layer to expose the source region; etching the source region and the ultra-thin insulating buried layer under the source region to form an opening that exposes the buried ground layer; filling the opening through epitaxial process to form a contact plug for the buried ground layer. Accordingly, the present invention further provides a semiconductor structure.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: January 17, 2017
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Patent number: 9543188
    Abstract: The present invention provides an isolation structure for a semiconductor substrate and a method for manufacturing the same, as well as a semiconductor device having the structure. The present invention relates to the field of semiconductor manufacture. The isolation structure comprises: a trench embedded in a semiconductor substrate; an oxide layer covering the bottom and sidewalls of the trench, and isolation material in the trench and on the oxide layer, wherein a portion of the oxide layer on an upper portion of the sidewalls of the trench comprises lanthanum-rich oxide. By the trench isolation structure according to the present invention, metal lanthanum in the lanthanum-rich oxide can diffuse into corners of the oxide layer of the gate stack, thus alleviating the impact of the narrow channel effect and making the threshold voltage adjustable.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: January 10, 2017
    Assignee: INSTITUTE OF MICROELECTONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Zhijiong Luo, Haizhou Yin, Huilong Zhu, Huicai Zhong
  • Patent number: 9530861
    Abstract: The present invention discloses a method for manufacturing a semiconductor device, comprising the steps of: forming a dummy gate stack structure on a substrate, wherein the dummy gate stack structure contains carbon-based materials; forming source/drain region in the substrate on both sides of the dummy gate stack structure; performing etching to remove the dummy gate stack structure until the substrate is exposed, resulting in a gate trench; and forming a gate stack structure in the gate trench. In accordance with the method for manufacturing a semiconductor device of the present invention, the dummy gate made of carbon-based materials is used to substitute the dummy gate made of silicon-based materials, then no oxide liner and/or etch blocking layer needs be added while the dummy gate is removed by etching in the gate last process, thus the reliability of device is ensured while the process is simplified and the cost is reduced.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: December 27, 2016
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Keke Zhang
  • Patent number: 9515169
    Abstract: There is provided a FinFET fabricating method, comprising: a. providing a substrate ; b. forming a fin on the substrate; c. forming a channel protective layer on the fin; d. forming a shallow trench isolation on both sides of the fin; e. forming a sacrificial gate stack and a spacer on the top surface and sidewalls of the channel region which is in the middle of the fin; f. forming source/drain regions in both ends of the fin; g. depositing an interlayer dielectric layer on the sacrificial gate stack and the source/drain regions, planarizing later to expose the sacrificial gate stack; h. removing the sacrificial gate stack stack to form a sacrificial gate vacancy and expose the channel region and the channel protective layer; i. covering a portion of the semiconductor structure in one end of the fin with a photoresist layer; j. removing a portion of the spacer not covered; k. removing the photoresist layer and filling a gate stack in the sacrificial gate vacancy; l.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: December 6, 2016
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Haizhou Yin, Yunfei Liu
  • Publication number: 20160343896
    Abstract: A solar cell structure is disclosed, which includes a solar cell array, including multiple solar cells arranged in parallel, wherein each solar cell includes a first semiconductor layer, a second semiconductor layer under the first semiconductor layer, top electrodes and bottom electrodes formed on surfaces of the first and second semiconductor layers, respectively; a top wire group on top of the solar cell array wherein each wire connects each of the multiple solar cells; a bottom wire group under the solar cell array wherein each wire connects each of the multiple solar cells and is placed away from the wires of the top wire group; and conductive adhesive on top of the top electrodes and on top of the bottom electrodes, being sandwiched between the top wire group and the solar cell array as well as between the bottom wire group and the solar cell array.
    Type: Application
    Filed: August 2, 2016
    Publication date: November 24, 2016
    Inventors: Haizhou YIN, Huilong ZHU, Zhijiong LUO
  • Patent number: 9496342
    Abstract: A MOSFET and a method for manufacturing the same are disclosed. The method comprises: a. providing a substrate (100), a dummy gate structure (200), a epitaxial protection layer (101) and a sacrificial spacer (205); b. covering the dummy gate structure (200) and the substrate (100) on one side thereof by a mask layer, and forming a vacancy (102) in the substrate; c. growing a semiconductor layer (300) on the semiconductor structure to fill in the vacancy (102); d. removing the epitaxial protection layer (101) and the sacrificial spacer (205), and sequentially forming source/drain extension regions, a spacer (201), source/drain regions, and an interlayer dielectric layer (500); and e. removing the dummy gate structure (200) to form a dummy gate vacancy, and forming a gate stack in the dummy gate vacancy. In the MOSFET structure of the present disclosure, negative effects of DIBL on device performance can be effectively reduced.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: November 15, 2016
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventor: Haizhou Yin
  • Patent number: 9496178
    Abstract: The present disclosure provides a semiconductor device and a method for manufacturing the same. The semiconductor device comprises: a semiconductor layer; a first fin being formed by patterning the semiconductor layer; and a second fin being formed by patterning the semiconductor layer, wherein: top sides of the first and second fins have the same height; bottom sides of the first and second fins adjoin the semiconductor layer; and the second fin is higher than the first fin. According to the present disclosure, a plurality of semiconductor devices with different dimensions can be integrated on the same wafer. As a result, manufacturing process can be shortened and manufacturing cost can be reduced. Furthermore, devices with different driving capabilities can be provided.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: November 15, 2016
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Haizhou Yin, Zhijiong Luo
  • Publication number: 20160276467
    Abstract: A method of manufacturing a FinFET device is provided, comprising: a. providing a substrate (100); b. forming a fin (200) on the substrate; c. forming an shallow trench isolation structure (300) on the substrate; d. forming an sacrificial gate stack on the isolation structure, wherein the sacrificial gate stack intersects the fin; e. forming source/drain doping regions by ion implantation into the fin; f. depositing an interlayer dielectric layer (400) on the substrate; g. removing the sacrificial gate stack to form a sacrificial gate vacancy; h. forming an doped region (201) under the sacrificial gate vacancy; i. etching the shallow trench isolation structure (300) under the sacrificial gate vacancy until the top surface of the shallow trench isolation structure (300) levels with the bottom surface of the source/drain doping regions; j. forming a new gate stack in the sacrificial gate vacancy.
    Type: Application
    Filed: October 22, 2013
    Publication date: September 22, 2016
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Yunfei Liu, Haizhou Yin, Keke Zhang
  • Patent number: 9401425
    Abstract: A semiconductor structure is disclosed. The semiconductor structure comprises: a substrate (130), a support structure (131), a base region (100), a gate stack, a spacer (240), and a source/drain region, wherein the gate stack is located on the base region (100), and the base region (100) is supported on the substrate (130) by the support structure (131), wherein the sidewall cross-section of the support structure (131) is in a shape of a concave curve; an isolation structure (123) is formed beneath the edges on both sides of the base region (100), wherein a portion of the isolation structure (123) is connected to the substrate (130); a cavity (112) is formed between the isolation structure (123) and the support structure (131); and there exists a source/drain region at least on both sides of the base region (100) and the isolation structure (123). Accordingly, a method for manufacturing the semiconductor structure is also disclosed.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: July 26, 2016
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Huilong Zhu, Haizhou Yin, Zhijiong Luo
  • Publication number: 20160204199
    Abstract: A MOSFET structure and a method for manufacturing the same are disclosed. The method comprises: a. providing a substrate (100); b. forming a silicon germanium channel layer (101), a dummy gate structure (200) and a sacrificial spacer (102); c. removing the silicon germanium channel layer and portions of the substrate which are not covered by the dummy gate structure (200) and located under both sides of the dummy gate structure 200, so as to form vacancies (201); d. selectively epitaxially growing a first semiconductor layer (300) on the semiconductor structure to fill bottom and sidewalls of the vacancies (201); and e. removing the sacrificial spacer (102) and filling a second semiconductor layer (400) in the vacancies which are not filled by the first semiconductor layer (300). In the semiconductor structure of the present disclosure, carrier mobility in the channel can be increased, negative effects induced by the short channel effects can be suppressed, and device performance can be enhanced.
    Type: Application
    Filed: October 22, 2013
    Publication date: July 14, 2016
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventor: Haizhou Yin
  • Publication number: 20160181363
    Abstract: Provided is a MOSFET comprising: a substrate (100); a gate stack (500) on the substrate (100); source/drain regions (305) in the substrate on both sides of the gate stack (500); an interlayer dielectric layer (400) covering the source/drain regions; and source/drain extension regions (205) under edges on both sides of the gate stack (500); wherein insulators, which are not connected each other, are formed beneath the source/drain extension regions (205) under edges on both sides of the gate stack (500). By means of the MOSFET in the present disclosure, negative effects induced by DIBL on device performance can be effectively reduced.
    Type: Application
    Filed: October 22, 2013
    Publication date: June 23, 2016
    Inventors: Haizhou Yin, Rui Li
  • Patent number: 9373722
    Abstract: The present invention provides a semiconductor structure comprising: a semiconductor base located on an insulating layer, wherein the insulating layer is located on a semiconductor substrate; source/drain regions, which are in contact with first sidewalls of the semiconductor base opposite to each other; gates located on second sidewalls of the semiconductor base opposite to each other; an insulating via located on the insulating layer and embedded into the semiconductor base; and an epitaxial layer sandwiched between the insulating via and the semiconductor base. The present invention further provides a method for manufacturing a semiconductor structure comprising: forming an insulating layer on a semiconductor substrate; forming a semiconductor base on the insulating layer; forming a void within the semiconductor base, wherein the void exposes the semiconductor substrate; forming an epitaxial layer in the void through selective epitaxy; and forming an insulating via within the void.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: June 21, 2016
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Publication number: 20160172446
    Abstract: A MOSFET and a method for manufacturing the same are disclosed. The method comprises: a. providing a substrate (100), a dummy gate structure (200), a epitaxial protection layer (101) and a sacrificial spacer (205); b. covering the dummy gate structure (200) and the substrate (100) on one side thereof by a mask layer, and forming a vacancy (102) in the substrate; c. growing a semiconductor layer (300) on the semiconductor structure to fill in the vacancy (102); d. removing the epitaxial protection layer (101) and the sacrificial spacer (205), and sequentially forming source/drain extension regions, a spacer (201), source/drain regions, and an interlayer dielectric layer (500); and e. removing the dummy gate structure (200) to form a dummy gate vacancy, and forming a gate stack in the dummy gate vacancy. In the MOSFET structure of the present disclosure, negative effects of DIBL on device performance can be effectively reduced.
    Type: Application
    Filed: October 22, 2013
    Publication date: June 16, 2016
    Inventor: Haizhou YIN
  • Publication number: 20160172495
    Abstract: A semiconductor structure is provided, comprising a substrate (130), a support structure (131), a base region (100), a gate stack, a spacer (240), and a source/drain region, wherein the gate stack is located above the base region (100), and the base region (100) is supported above the substrate (130) by the support structure (131), wherein the support structure (131) has a sigma-shaped lateral cross-section; an isolation structure (123) is formed below edges on both sides of the base region (100), wherein a portion of the isolation structure (123) is connected to the substrate (130); a cavity (112) is formed between the isolation structure (123) and the support structure (131); and a source/drain region is formed on both sides of the base region (100) and the isolation structure (123). Accordingly, a method for manufacturing the semiconductor structure is also provided.
    Type: Application
    Filed: November 27, 2012
    Publication date: June 16, 2016
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong ZHU, Haizhou YIN, Zhijiong LUO
  • Publication number: 20160163832
    Abstract: There is provided a FinFET fabricating method, comprising: a. providing a substrate ; b. forming a fin on the substrate; c. forming a channel protective layer on the fin; d. forming a shallow trench isolation on both sides of the fin; e. forming a sacrificial gate stack and a spacer on the top surface and sidewalls of the channel region which is in the middle of the fin; f. forming source/drain regions in both ends of the fin; g. depositing an interlayer dielectric layer on the sacrificial gate stack and the source/drain regions, planarizing later to expose the sacrificial gate stack; h. removing the sacrificial gate stack stack to form a sacrificial gate vacancy and expose the channel region and the channel protective layer; i. covering a portion of the semiconductor structure in one end of the fin with a photoresist layer; j. removing a portion of the spacer not covered; k. removing the photoresist layer and filling a gate stack in the sacrificial gate vacancy; l.
    Type: Application
    Filed: October 22, 2013
    Publication date: June 9, 2016
    Inventors: Haizhou YIN, Yunfei LIU
  • Publication number: 20160163825
    Abstract: Provided are a MOSFET and a method for manufacturing the same. The method comprises: a. Providing a substrate (100), a dummy gate vacancy, a first spacer (150), source/drain extension regions (205), source/drain regions (200) and an interlayer dielectric layer (300); b. Depositing a silicon dioxide layer (160) in the dummy gate vacancy on the substrate; c. Depositing a gate dielectric layer (400) on the formed semiconductor structure; d. Forming a second spacer (450) in the dummy gate vacancy, wherein the second spacer (450) is adjacent to the gate dielectric layer (400) and is flushed with the interlayer dielectric layer (300); and e. Forming a gate stack (500) in the dummy gate vacancy . Negative effects caused by variation in thickness of the oxide layer under the gate can be eliminated, and device performance can be improved.
    Type: Application
    Filed: October 22, 2013
    Publication date: June 9, 2016
    Inventors: Haizhou Yin, Rui Li