Patents by Inventor Hak-Lay Chuang

Hak-Lay Chuang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11515473
    Abstract: The present disclosure provides a semiconductor structure, including an Nth metal layer over a transistor region, where N is a natural number, and a bottom electrode over the Nth metal layer. The bottom electrode comprises a bottom portion having a first width, disposed in a bottom electrode via (BEVA), the first width being measured at a top surface of the BEVA, and an upper portion having a second width, disposed over the bottom portion. The semiconductor structure also includes a magnetic tunneling junction (MTJ) layer having a third width, disposed over the upper portion, a top electrode over the MTJ layer and an (N+1)th metal layer over the top electrode. The first width is greater than the third width.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: November 29, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Harry-Hak-Lay Chuang, Shih-Chang Liu, Chern-Yow Hsu, Kuei-Hung Shen
  • Publication number: 20220373594
    Abstract: In some embodiments, a semiconductor wafer testing system is provided. The semiconductor wafer testing system includes a semiconductor wafer prober having one or more conductive probes, where the semiconductor wafer prober is configured to position the one or more conductive probes on an integrated chip (IC) that is disposed on a semiconductor wafer. The semiconductor wafer testing system also includes a ferromagnetic wafer chuck, where the ferromagnetic wafer chuck is configured to hold the semiconductor wafer while the wafer prober positions the one or more conductive probes on the IC. An upper magnet is disposed over the ferromagnetic wafer chuck, where the upper magnet is configured to generate an external magnetic field between the upper magnet and the ferromagnetic wafer chuck, and where the ferromagnetic wafer chuck amplifies the external magnetic field such that the external magnetic field passes through the IC with an amplified magnetic field strength.
    Type: Application
    Filed: August 8, 2022
    Publication date: November 24, 2022
    Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang
  • Patent number: 11506706
    Abstract: In some embodiments, a semiconductor wafer testing system is provided. The semiconductor wafer testing system includes a semiconductor wafer prober having one or more conductive probes, where the semiconductor wafer prober is configured to position the one or more conductive probes on an integrated chip (IC) that is disposed on a semiconductor wafer. The semiconductor wafer testing system also includes a ferromagnetic wafer chuck, where the ferromagnetic wafer chuck is configured to hold the semiconductor wafer while the wafer prober positions the one or more conductive probes on the IC. An upper magnet is disposed over the ferromagnetic wafer chuck, where the upper magnet is configured to generate an external magnetic field between the upper magnet and the ferromagnetic wafer chuck, and where the ferromagnetic wafer chuck amplifies the external magnetic field such that the external magnetic field passes through the IC with an amplified magnetic field strength.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: November 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang
  • Patent number: 11502126
    Abstract: A method for fabricating an integrated circuit is provided. The method includes depositing an etch stop layer over an interconnect layer having a conductive feature; depositing a protective layer over the etch stop layer; depositing a first dielectric layer over the protective layer; etching a via opening in the first dielectric layer, wherein the protective layer has a higher etch resistance to etching the via opening than that of the first dielectric layer; etching a portion of the protective layer exposed by the via opening; etching a portion of the etch stop layer exposed by the via opening, such that the via opening exposes the conductive feature; forming a bottom electrode via in the via opening; and forming a memory stack over the bottom electrode via.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: November 15, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Harry-Hak-Lay Chuang, Sheng-Wen Fu, Jun-Yao Chen, Sheng-Huang Huang, Hung-Cho Wang
  • Publication number: 20220359815
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a magnetic tunnel junction arranged between a bottom electrode and a top electrode and surrounded by a dielectric structure disposed over a substrate. The top electrode has a width that decreases as a height of the top electrode increases. A bottom electrode via couples the bottom electrode to a lower interconnect. An upper interconnect structure is coupled to the top electrode. The upper interconnect structure has a vertically extending surface that is disposed laterally between first and second outermost sidewalls of the upper interconnect structure and along a sidewall of the top electrode. The vertically extending surface and the first outermost sidewall are connected to a bottom surface of the upper interconnect structure that is vertically below a top of the top electrode.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 10, 2022
    Inventors: Ming-Che Ku, Harry-Hak-Lay Chuang, Hung Cho Wang, Tsun Chung Tu, Jiunyu Tsai, Sheng-Huang Huang
  • Publication number: 20220359269
    Abstract: A semiconductor feature includes: a semiconductor substrate; a dielectric structure and a semiconductor device disposed on the semiconductor substrate; an interconnecting structure disposed in the dielectric structure and connected to the semiconductor device; an STI structure disposed in the semiconductor substrate and surrounding the semiconductor device; two DTI structures penetrating the semiconductor substrate and the STI structure and surrounding the semiconductor device; a passivation structure connected to the semiconductor substrate and the DTI structures and located opposite to the interconnecting structure; and a conductive structure surrounded by the passivation structure, penetrating the semiconductor substrate and the STI structure into the dielectric structure, located between the DTI structures and electrically connected to the semiconductor device via the interconnecting structure.
    Type: Application
    Filed: September 10, 2021
    Publication date: November 10, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Harry-Hak-Lay CHUANG, Chung-Jen HUANG, Wen-Tuo HUANG, Wei-Cheng WU
  • Publication number: 20220352151
    Abstract: A method of fabricating a semiconductor device includes forming first gate structure and a second gate structure over a core device region of a substrate. The method further includes forming stressors at opposite sides of the first gate structure. The method further includes doping the stressors to form a first source region and a first drain region of a first device. The method further includes doping into the substrate and at opposite sides of the second gate structure to form a second source region and a second drain region of a second device, wherein the first source region, the first drain region, the second source region and the second drain region are of a same conductivity, and the first source region comprises a different material from the second source region.
    Type: Application
    Filed: July 13, 2022
    Publication date: November 3, 2022
    Inventors: Harry Hak-Lay CHUANG, Wei Cheng WU
  • Publication number: 20220352457
    Abstract: A method for manufacturing a memory device includes forming a dielectric layer over a substrate, in which the substrate has a cell region and a logic region adjacent to the cell region. A bottom electrode, a memory layer, and a top electrode are formed in sequence over the cell region of the substrate. A first spacer is formed extending upwards from the bottom electrode. A second spacer is formed extending upwards from the dielectric layer and lining with sidewalls of the bottom electrode and the first spacer.
    Type: Application
    Filed: April 28, 2021
    Publication date: November 3, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Harry-Hak-Lay CHUANG, Hung-Cho WANG, Sheng-Chang CHEN, Jun-Yao CHEN, Chang-Jen HSIEH
  • Patent number: 11489107
    Abstract: The present disclosure relates to a method of forming an integrated chip. The method includes forming an ILD layer over a memory device over a substrate. A hard mask structure is formed over the ILD layer and a patterning structure is formed over the hard mask structure. The hard mask structure has sidewalls defining a first opening directly over the memory device and centered along a first line perpendicular to an upper surface of the substrate. The patterning structure has sidewalls defining a second opening directly over the memory device and centered along a second line parallel to the first line. The second line is laterally offset from the first line by a non-zero distance. The ILD layer is etched below an overlap of the first and second openings to define a top electrode via hole. The top electrode via hole is with a conductive material.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: November 1, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Che Ku, Harry-Hak-Lay Chuang, Hung Cho Wang, Tsun Chung Tu, Jiunyu Tsai, Sheng-Huang Huang
  • Publication number: 20220344578
    Abstract: A package structure includes an integrated circuit package and a magnetic shielding structure. The integrated circuit package includes a semiconductor chip. The magnetic shielding structure surrounds the integrated circuit package, in which the magnetic shielding structure including a top plate and a bottom plate disposed on two opposite sides of the integrated circuit package.
    Type: Application
    Filed: April 22, 2021
    Publication date: October 27, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Harry-Hak-Lay CHUANG, Yuan-Jen LEE, Tien-Wei CHIANG
  • Publication number: 20220328423
    Abstract: The present disclosure provides a package structure, including a mounting pad having a mounting surface, a semiconductor chip disposed on the mounting surface of the mounting pad, wherein the semiconductor chip includes a first surface, a second surface opposite to the first surface and facing the mounting surface, and a third surface connecting the first surface and the second surface, a first magnetic field shielding, including a first portion proximal to the third surface of the semiconductor chip, wherein the first portion has a first height calculated from the mounting surface to a top surface, and a second portion distal to the semiconductor chip, has a second height calculated from the mounting surface to a position at a surface facing away from the mounting surface, wherein the second height is less than the first height, wherein the second portion has an inclined sidewall.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 13, 2022
    Inventors: HARRY-HAK-LAY CHUANG, CHIA-HSIANG CHEN, MENG-CHUN SHIH, CHING-HUANG WANG, TIEN-WEI CHIANG
  • Publication number: 20220328325
    Abstract: A semiconductor device includes a substrate, a first well, a second well, a metal gate, a poly gate, a source region, and a drain region. The first well and the second well are within the substrate. The metal gate is partially over the first well. The poly gate is over the second well. The poly gate is separated from the metal gate, and a width ratio of the poly gate to the metal gate is in a range from about 0.1 to about 0.2. The source region and the drain region are respectively within the first well and the second well.
    Type: Application
    Filed: June 27, 2022
    Publication date: October 13, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Alexander KALNITSKY, Wei-Cheng WU, Harry-Hak-Lay CHUANG
  • Patent number: 11469372
    Abstract: The present disclosure relates to an integrated chip. The integrated chip includes a memory device surrounded by a dielectric structure disposed over a substrate. The memory device includes a data storage structure disposed between a bottom electrode and a top electrode. A top electrode via couples the top electrode to an upper interconnect wire. A first line is tangent to a first outermost sidewall of the top electrode via and a second line is tangent to an opposing second outermost sidewall of the top electrode via. The first line is oriented at a first angle with respect to a horizontal plane that is parallel to an upper surface of the substrate and the second line is oriented at a second angle with respect to the horizontal plane. The second angle is less than the first angle.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: October 11, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Che Ku, Harry-Hak-Lay Chuang, Hung Cho Wang, Tsun Chung Tu, Jiunyu Tsai, Sheng-Huang Huang
  • Patent number: 11469269
    Abstract: Some embodiments relate to an integrated chip. The integrated chip includes a first memory cell overlying a substrate and a second memory cell overlying the substrate. A dielectric structure overlies the substrate. A trench extends into the dielectric structure and is spaced laterally between the first memory cell and the second memory cell. A dielectric layer is disposed within the trench.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: October 11, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-Chang Chen, Harry-Hak-Lay Chuang, Hung Cho Wang, Sheng-Huang Huang
  • Publication number: 20220319920
    Abstract: The present disclosure relates to an integrated chip in some embodiments. The integrated chip includes a memory device disposed over a lower interconnect within one or more lower inter-level dielectric (ILD) layers over a substrate. An upper ILD layer laterally surrounds the memory device. An etch stop layer is disposed along a sidewall of the memory device and over an upper surface of the one or more lower ILD layers. An upper interconnect is arranged along opposing sides of the memory device. The upper interconnect rests of an upper surface of the etch stop layer. The upper surface of the etch stop layer is vertically below a top of the memory device.
    Type: Application
    Filed: June 17, 2022
    Publication date: October 6, 2022
    Inventors: Sheng-Huang Huang, Chung-Chiang Min, Harry-Hak-Lay Chuang, Hung Cho Wang, Sheng-Chang Chen
  • Publication number: 20220320314
    Abstract: A method of making a semiconductor device includes depositing a TiN layer over a substrate. The method further includes doping a first portion of the TiN layer using an oxygen-containing plasma treatment. The method further includes doping a second portion of the TiN layer using a nitrogen-containing plasma treatment, wherein the second portion of the TiN layer directly contacts the first portion of the TiN layer. The method further includes forming a first metal gate electrode over the first portion of the TiN layer. The method further includes forming a second metal gate electrode over the second portion of the TiN layer, wherein the first metal gate electrode has a different work function from the second metal gate electrode, and the second metal gate electrode directly contacts the first metal gate electrode.
    Type: Application
    Filed: June 16, 2022
    Publication date: October 6, 2022
    Inventors: Ming ZHU, Hui-Wen LIN, Harry Hak-Lay CHUANG, Bao-Ru YOUNG, Yuan-Sheng HUANG, Ryan Chia-Jen CHEN, Chao-Cheng CHEN, Kuo-Cheng CHING, Ting-Hua HSIEH, Carlos H. DIAZ
  • Publication number: 20220320044
    Abstract: Bonded wafer device structures, such as a wafer-on-wafer (WoW) structures, and methods of fabricating bonded wafer device structures, including an array of contact pads formed in an interconnect level of at least one wafer of the bonded wafer device structure. The array of contact pads formed in an interconnect level of at least one wafer may have an array pattern that corresponds to an array pattern of contact pads that is subsequently formed over a surface of the bonded wafer structure. The array of contact pads formed in an interconnect level of at least one wafer of the bonded wafer device structure may enable improved testing of individual wafers, including circuit probe testing, prior to the wafer being stacked and bonded to one or more additional wafers to form a bonded wafer structure.
    Type: Application
    Filed: March 31, 2021
    Publication date: October 6, 2022
    Inventors: Harry-Hak-Lay CHUANG, Wen-Tuo HUANG, Wei Cheng WU
  • Publication number: 20220302114
    Abstract: A includes depositing a gate electrode layer over a semiconductor substrate; patterning the gate electrode layer into a first gate electrode and a gate electrode extending portion; forming a first gate spacer alongside the first gate electrode; patterning the gate electrode extending portion into a second gate electrode after forming the first gate spacer; and forming a second gate spacer alongside the second gate electrode and a third gate spacer around the first spacer.
    Type: Application
    Filed: March 18, 2021
    Publication date: September 22, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Harry-Hak-Lay CHUANG, Li-Feng TENG, Wei-Cheng WU, Fang-Lan CHU, Ya-Chen KAO
  • Publication number: 20220291306
    Abstract: Disclosed methods include placing a semiconductor wafer containing MRAM devices into a first magnetic field that has a magnitude sufficient to magnetically polarize MRAM bits and has a substantially uniform field strength and direction over the entire area of the wafer. The method further includes placing the wafer in a second magnetic field having an opposite field direction, a substantially uniform field strength and direction over the entire area of the wafer, and magnitude less than a design threshold for MRAM bit magnetization reversal. The method further includes determining a presence of malfunctioning MRAM bits by determining that such malfunctioning MRAM bits have a magnetic polarization that was reversed due to exposure to the second magnetic field. Malfunctioning MRAM bits may further be characterized by electrically reading data bits, or by using a chip probe to read one or more of voltage, current, resistances, etc., of the MRAM devices.
    Type: Application
    Filed: September 9, 2021
    Publication date: September 15, 2022
    Inventors: Cheng-Wei Chien, Harry-Hak-Lay Chuang, Kuei-Hung Shen, Kuo-Feng Huang, Bo-Hung Lin, Chun-Chi Chen
  • Publication number: 20220285344
    Abstract: Various embodiments of the present disclosure are directed towards a method to embed planar field-effect transistor (FETs) with fin field-effect transistors (finFETs). A semiconductor substrate is patterned to define a mesa and a fin. A trench isolation structure is formed overlying the semiconductor substrate and surrounding the mesa and the fin. A first gate dielectric layer is formed on the mesa, but not the fin. The trench isolation structure recessed around the fin, but not the mesa, after the forming the first gate dielectric layer. A second gate dielectric layer is deposited overlying the first gate dielectric layer at the mesa and further overlying the fin. A first gate electrode is formed overlying the first and second gate dielectric layers at the mesa and partially defining a planar FET. A second gate electrode is formed overlying the second gate dielectric layer at the fin and partially defining a finFET.
    Type: Application
    Filed: May 24, 2022
    Publication date: September 8, 2022
    Inventors: Harry-Hak-Lay Chuang, Wei Cheng Wu, Li-Feng Teng, Li-Jung Liu