Patents by Inventor Hamed Sadeghian Marnani

Hamed Sadeghian Marnani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240110939
    Abstract: The present disclosure relates to a method of operating an SPM system including a landing procedure. The landing procedure comprises a first landing stage including a first translation over a first actuation distance by a coarse translation means to bring a probe tip held by an SPM head from an initial separation from a substrate to be probed to a second, more proximal, separation as defined by a characteristic transitional response of the probe tip in proximity to the substrate. Following the first stage a second translation is applied, over a second actuation distance by a fine translation means under feedback control to bring the probe tip to a working separation. Prior to applying the first (coarse) actuation distance an initial optical distance is determined which is indicative of the initial separation, using a detector, preferably a mark sensor. The measured initial optical distance is related to a reference distance so as to determine a deviation.
    Type: Application
    Filed: February 9, 2022
    Publication date: April 4, 2024
    Inventors: Hamed SADEGHIAN MARNANI, Jianfei YANG
  • Patent number: 11940416
    Abstract: The present invention relates to a heterodyne scanning probe microscopy method for imaging structures on or below the surface of a sample, the method including applying, using a transducer, an acoustic input signal to the sample sensing, using a probe including a probe tip in contact with the surface, an acoustic output signal, wherein the acoustic output signal is representative of acoustic surface waves induced by the acoustic input signal wherein the acoustic input signal comprises at least a first signal component having a frequency above 1 gigahertz, and wherein for detecting of the acoustic output signal the method comprises a step of applying a further acoustic input signal to at least one of the probe or the sample for obtaining a mixed acoustic signal, the further acoustic input signal including at least a second signal component having a frequency above 1 gigahertz, wherein the mixed acoustic signal comprises a third signal component having a frequency equal to a difference between the first frequen
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: March 26, 2024
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Hamed Sadeghian Marnani, Maarten Hubertus van Es, Paul Louis Maria Joseph van Neer, Rutger Meijer Timmerman Thijssen
  • Publication number: 20240027491
    Abstract: Aspects of the present disclosure pertain to a probe cassette for holding a probe, e.g. an atomic force microscopy, at a predefined holding position for automated pickup. The probe cassette comprises a main body 3 including a support face 1 for supporting the probe; and one or more physical confinement elements 50 formed or affixed along said support face, said one or more physical confinement elements providing a plurality of engagement faces disposed along a perimeter of the predefined holding position, said engagement faces extending in a direction out of the support face, so as to define a pocket 9 for holding the probe, wherein the pocket is dimensioned to restrict a lateral shift of the probe in any direction along the support face.
    Type: Application
    Filed: November 26, 2021
    Publication date: January 25, 2024
    Inventors: Hamed SADEGHIAN MARNANI, Wouter Arie DE ZEEUW
  • Publication number: 20240004321
    Abstract: An alignment system and method for aligning an object (O) having an object marker. An image of the object marker is projected onto an imaging sensor (11) having sensor elements. At least one reference marker is projected onto the imaging sensor (11). Based on image output (111) from the imaging sensor (11), respective subsets of sensor elements are determined. Based on a first subset of the sensor elements, a marker position is determined where the image of the object marker is projected onto the imaging sensor (11). Based on a second subset (Sr) of the sensor elements, a reference position is determined where the reference marker is projected onto the imaging sensor (11). The marker position correlates with a position (Xm,Ym) of the object (O) whereas the reference position does not. The object position (Xm,Ym) is determined based on the marker position relative to the reference position.
    Type: Application
    Filed: November 19, 2021
    Publication date: January 4, 2024
    Inventors: Hamed SADEGHIAN MARNANI, Taras PISKUNOV, Erik TABAK
  • Publication number: 20230393169
    Abstract: The invention is directed at an arrangement for determining cantilever deflection in a scanning probe microscopy system. The system includes a scan head supporting a probe, including the cantilever and a probe tip, comprising a specular reflective surface. The arrangement comprises an optical source for providing an optical beam. The optical beam is impinged onto the specular reflective surface. An optical sensor receives the reflected beam from the specular reflected surface, forming a light spot on the sensor. The optical sensor provides a sensor signal from which location information of the light spot on the sensor is obtainable. The optical sensor comprises an array of photo diode elements. Each photo diode element is configured for providing a photo diode signal to be included in the sensor signal, and comprises a photo sensitive surface having an effective area dimension in a plane transverse to the beam direction which is smaller than the cross sectional area of the reflective beam.
    Type: Application
    Filed: November 3, 2021
    Publication date: December 7, 2023
    Inventors: Hamed SADEGHIAN MARNANI, Arseniy KALININ, Kevin Henri Louis MAKLES
  • Patent number: 11774381
    Abstract: A method for measuring damage (D) of a substrate (1) caused by an electron beam (2). The method comprises using an atomic force microscope (AFM) to provide a measurement (S2) of mechanical and/or chemical material properties (P2) of the substrate (1) at an exposure area (1a) of the electron beam (2). The method further comprises calculating a damage parameter (Sd) indicative for the damage (D) based on the measurement (S2) of the material properties (P2) at the exposure area (1a).
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: October 3, 2023
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventor: Hamed Sadeghian Marnani
  • Publication number: 20230213552
    Abstract: The invention relates to a probe cassette for storing, transporting and handling one or more probe devices for a probe based system, the cassette including: a cassette body having at least one probe receptacle arranged to accommodate a probe device, a lid connectable to the cassette body, and a clamping unit configured to retain the probe device at the receptacle by exerting a clamping force on said probe device when the lid is in a closed position, wherein the clamping unit includes an adjustment member for adjusting the clamping force, wherein the clamping unit is selectively operable from a first position, in which the clamping force is insufficient to provide clamping, to a plurality of second positions, in which the clamping force is sufficient to an extent at which movement of the probe device at the receptacle is prevented.
    Type: Application
    Filed: May 28, 2021
    Publication date: July 6, 2023
    Inventors: Johannes Gradus Martinus KOERS, Servaas Louis BANK, Hamed SADEGHIAN MARNANI, Artem KHACHATURIANTS, Arseniy KALININ
  • Publication number: 20230213551
    Abstract: A probe cassette for storing, transporting and handling one or more probe devices for a probe based system, the cassette including a body having at least one probe receptacle arranged to accommodate a probe device, wherein, at the probe receptacle, a vacuum clamping member is arranged for selectively holding the probe device under a retaining force, wherein the receptacle includes at least one aperture which is, during selective holding of the probe device, connectable to a vacuum pressure through a passageway arranged in the cassette body, wherein the cassette includes a first fluid port connectable to a first source of vacuum for delivering the vacuum pressure.
    Type: Application
    Filed: May 28, 2021
    Publication date: July 6, 2023
    Inventors: Johannes Gradus Martinus KOERS, Servaas Louis BANK, Hamed SADEGHIAN MARNANI
  • Patent number: 11650224
    Abstract: The invention is directed at a method of positioning a carrier on a flat surface using an positioning member, wherein the carrier comprises an upper part and a base which are connected to each other such as to be arranged remote from each other, wherein the positioning member is arranged between the base and the upper part such that the base is located at an opposite side of the positioning member with respect to the upper part of the carrier, the upper part resting on the positioning member prior to placing of the carrier onto the flat surface, wherein the upper part comprises three engagement elements, and wherein the positioning member comprises a support surface for receiving the three engagement elements of the upper part, said support surface including a plurality of sockets forming a kinematic mount for said three engagement elements, wherein the base comprises three landing elements, each landing element being associated with a respective one of the three engagement elements, and the method comprising
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: May 16, 2023
    Assignee: Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO
    Inventors: Hamed Sadeghian Marnani, Jasper Winters, William Edward Crowcombe, Teunis Cornelis van den Dool, Geerten Frans Ijsbrand Kramer, Albert Dekker
  • Patent number: 11644481
    Abstract: The surface of the atomic force microscopy (AFM) cantilever is defined by a main cantilever body and an island. The island is partly separated from the main body by a separating space between facing edges of the main body and the island. At least one bridge connects the island to the main body, along a line around which the island is able to rotate through torsion of the at least one bridge. The island has a probe tip located on the island at a position offset from said line and a reflection area. In an AFM a light source directs light to the reflection area and a light spot position detector detects a displacement of a light spot formed from light reflected by the reflection area, for measuring an effect of forces exerted on the probe tip.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: May 9, 2023
    Assignee: Nederlandse Organisatie voor toegepast-nataurwetenschappelijk onderzoek TNO
    Inventors: Maarten Hubertus Van Es, Hamed Sadeghian Marnani
  • Patent number: 11635448
    Abstract: The present document relates to a heterodyne scanning probe microscopy (SPM) method for subsurface imaging, and includes: applying an acoustic input signal to a sample and sensing an acoustic output signal using a probe. The acoustic input signal comprises a plurality of signal components at unique frequencies, including a carrier frequency and at least two excitation frequencies. The carrier frequency and the excitation frequencies form a group of frequencies, which are distributed with an equal difference frequency between each two subsequent frequencies of the group. The difference frequency is below a sensitivity threshold frequency of the cantilever for enabling sensing of the acoustic output signal. The document also describes an SPM system.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: April 25, 2023
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Sri Ram Shankar Rajadurai, Daniele Piras, Kodai Hatakeyama, Paul Louis Maria Joseph Van Neer, Maarten Hubertus Van Es, Hamed Sadeghian Marnani, Marcus Johannes Van Der Lans
  • Patent number: 11592460
    Abstract: The present invention relates to a scan head for a scanning probe microscope arranged for moving a probe including a conductive cantilever relatively to a substrate surface, the head comprising: a first electrode positioned such that a capacitor is formed across a gap between the first electrode and a second electrode, wherein the second electrode is formed by the conductive cantilever; a voltage source for actuating the conductive cantilever by applying a voltage to the capacitor; and at least a first resistor arranged in series between the voltage source and one of the first and second electrodes such as to form an RC circuit for damping a vibration of the cantilever.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: February 28, 2023
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Roelof Willem Herfst, Hamed Sadeghian Marnani
  • Patent number: 11402405
    Abstract: A method and system for performing subsurface atomic force microscopy measurements, the system comprising: a signal source for generating an drive signal; a transducer configured to receive the drive signal for converting the drive signal into vibrational waves and coupling said vibrational waves into a stack comprising a sample for interaction with subsurface features within said sample; cantilever tip for contacting the sample for measuring surface displacement resulting from the vibrational waves to determine subsurface features; wherein the system includes a measurement device for measuring a measurement signal returning from the transducer during and/or in between the subsurface atomic force microscopy measurements.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: August 2, 2022
    Assignee: Nederlandse Oganisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Paul Louis Maria Joseph Van Neer, Maarten Hubertus Van Es, Hamed Sadeghian Marnani, Rutger Meijer Timmerman Thijssen, Martinus Cornelius Johannes Maria Van Riel
  • Publication number: 20220229088
    Abstract: The present document relates to a heterodyne scanning probe microscopy (SPM) method for subsurface imaging, and includes: applying an acoustic input signal to a sample and sensing an acoustic output signal using a probe. The acoustic input signal comprises a plurality of signal components at unique frequencies, including a carrier frequency and at least two excitation frequencies. The carrier frequency and the excitation frequencies form a group of frequencies, which are distributed with an equal difference frequency between each two subsequent frequencies of the group. The difference frequency is below a sensitivity threshold frequency of the cantilever for enabling sensing of the acoustic output signal. The document also describes an SPM system.
    Type: Application
    Filed: May 22, 2020
    Publication date: July 21, 2022
    Inventors: Sri Ram Shankar RAJADURAI, Daniele PIRAS, Kodai HATAKEYAMA, Paul Louis Maria Joseph VAN NEER, Maarten Hubertus VAN ES, Hamed SADEGHIAN MARNANI, Marcus Johannes VAN DER LANS
  • Patent number: 11327092
    Abstract: Methods and systems for subsurface imaging of nanostructures buried inside a plate shaped substrate are provided. An ultrasonic generator at a side face of the substrate is used to couple ultrasound waves (W) into an interior of the substrate. The interior has or forms a waveguide for propagating the ultrasound waves (W) in a direction (X) along a length of the substrate transverse to the side face. The nanostructures are imaged using an AFM tip to measure an effect (E) at the top surface caused by direct or indirect interaction of the ultrasound waves (W) with the buried nanostructures.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: May 10, 2022
    Assignee: NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETENSCHAPPELIJK ONDERZOEK TNO
    Inventors: Daniele Piras, Paul Louis Maria Joseph van Neer, Hamed Sadeghian Marnani
  • Patent number: 11320454
    Abstract: The present document relates to a scanning probe microscopy system and method for mapping nanostructures on the surface of a sample. The system comprises a sample support structure, a scan head including a probe comprising a cantilever and a probe tip, and an actuator for scanning the probe tip relative to the sample surface. The system also includes an optical source, and a sensor unit for obtaining a sensor signal indicative of a position of the probe tip. The sensor unit includes a partially reflecting element for reflecting a reference fraction and for transmitting a sensing fraction of the optical signal. It further includes directional optics for directing the sensing fraction as an optical beam towards the probe tip, and for receiving a reflected fraction thereof to provide a sensed signal. Moreover the sensor includes an interferometer for providing one or more output signals, and signal conveyance optics for conveying the sensed signal and the reference signal to the interferometer.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: May 3, 2022
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Hamed Sadeghian Marnani, Aukje Arianne Annette Kastelijn, Peter Martijn Toet, Geerten Frans Ijsbrand Kramer, Evert Nieuwkoop, Albert Dekker, Martinus Cornelius Johannes Maria van Riel, Rik Kruidhof
  • Patent number: 11289367
    Abstract: This document is directed at a method of manufacturing a semiconductor element, the method comprising manipulating a surface of a substrate using an atomic force microscope, the atomic force microscope including a probe, the probe including a cantilever and a probe tip, the substrate including at least one or more device features embedded underneath the surface. The method comprises: imaging the embedded device features, and identifying that a position of the probe tip of the atomic force microscope is aligned with the feature; and displacing the probe tip transverse to the surface for exerting a stress for performing the step of surface manipulation, as for example contact holes. Imaging is performed by applying and obtaining an acoustic signal to and from the substrate via the probe tip, including a first and a second signal component at different frequencies. The imaging and surface manipulation are performed using said same probe and probe tip.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: March 29, 2022
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Violeta Navarro Paredes, Abbas Mohtashami, Hamed Sadeghian Marnani
  • Patent number: 11268935
    Abstract: The document relates to a method of performing subsurface imaging of embedded structures underneath a substrate surface, using an atomic force microscopy system. The system comprises a probe with a probe tip, and a sensor for sensing a position of the probe tip. The method comprises the steps of: positioning the probe tip relative to the substrate: applying a first acoustic input signal to the substrate; applying a second acoustic input signal to the substrate; detecting an output signal from the substrate in response to the first and second acoustic input signal; and analyzing the output signal. The first acoustic input signal comprises a first signal component and a second signal component, the first signal component comprising a frequency below 250 megahertz and the second signal component either including a frequency below 2.5 megahertz or a frequency such as to provide a difference frequency of at most 2.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: March 8, 2022
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Daniele Piras, Paul Louis Maria Joseph van Neer, Maarten Hubertus van Es, Hamed Sadeghian Marnani
  • Publication number: 20220057430
    Abstract: The present invention relates to a scan head for a scanning probe microscope arranged for moving a probe including a conductive cantilever relatively to a substrate surface, the head comprising: a first electrode positioned such that a capacitor is formed across a gap between the first electrode and a second electrode, wherein the second electrode is formed by the conductive cantilever; a voltage source for actuating the conductive cantilever by applying a voltage to the capacitor; and at least a first resistor arranged in series between the voltage source and one of the first and second electrodes such as to form an RC circuit for damping a vibration of the cantilever.
    Type: Application
    Filed: December 3, 2019
    Publication date: February 24, 2022
    Inventors: Roelof Willem HERFST, Hamed SADEGHIAN MARNANI
  • Publication number: 20220026816
    Abstract: The present document describes a lithographic patterning method for creating features on a surface of a substrate. The patterning method includes the steps of applying a resist material to the substrate surface for providing a resist material layer, selectively exposing, dependent on a location and based on patterning data, the resist material layer to a surface treatment step for chemically modifying the resist material of the resist material layer, and developing, based on the chemical modification of the resist material, the resist material layer such as to selectively remove the resist material. In particular, prior to the step of developing, the method comprises a step of scanning at least a part of the surface using an acoustic scanning probe microscopy method for determining a local contact stiffness of the substrate surface at a plurality of locations, for measuring one or more critical dimensions of the features to be formed on the surface.
    Type: Application
    Filed: December 12, 2019
    Publication date: January 27, 2022
    Inventors: Diederik Jan MAAS, Hamed SADEGHIAN MARNANI, Emile VAN VELDHOVEN