Patents by Inventor Hamed Sadeghian Marnani

Hamed Sadeghian Marnani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170146564
    Abstract: The invention is directed at a method of positioning a carrier on a flat surface using an positioning member, wherein the carrier comprises an upper part and a base which are connected to each other such as to be arranged remote from each other, wherein the positioning member is arranged between the base and the upper part such that the base is located at an opposite side of the positioning member with respect to the upper part of the carrier, the upper part resting on the positioning member prior to placing of the carrier onto the flat surface, wherein the upper part comprises three engagement elements, and wherein the positioning member comprises a support surface for receiving the three engagement elements of the upper part, said support surface including a plurality of sockets forming a kinematic mount for said three engagement elements, wherein the base comprises three landing elements, each landing element being associated with a respective one of the three engagement elements, and the method comprising
    Type: Application
    Filed: July 3, 2015
    Publication date: May 25, 2017
    Inventors: Hamed Sadeghian Marnani, Jasper Winters, William Edward Crowcombe, Teunis Cornelis van den Dool, Geerten Frans Ijsbrand Kramer, Albert Dekker
  • Publication number: 20170131323
    Abstract: The invention is directed at a method of performing scanning probe microscopy on a substrate surface using a scanning probe microscopy system, the system including at least one probe head, the probe head comprising a probe tip arranged on a cantilever and a tip position detector for determining a position of the probe tip along a z-direction transverse to an image plane, the method comprising: positioning the at least one probe head relative to the substrate surface; moving the probe tip and the substrate surface relative to each other in one or more directions parallel to the image plane for scanning of the substrate surface with the probe tip; and determining the position of the probe tip with the tip position detector during said scanning for mapping nanostructures on the substrate surface; wherein said step of positioning is performed by placing the at least one probe head on a static carrier surface.
    Type: Application
    Filed: July 3, 2015
    Publication date: May 11, 2017
    Applicant: Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO
    Inventors: Hamed Sadeghian Marnani, Jasper Winters, William Edward Crowcombe, Teunis Cornelis van den Dool, Geerten Frans ljsbrand Kramer
  • Publication number: 20170052209
    Abstract: The invention is directed at a method of advancing a probe tip of a probe of a scanning microscopy device towards a sample surface. The scanning microscopy device comprises the probe for scanning the sample surface for mapping nanostructures on the sample surface. The probe tip of the probe is mounted on a cantilever arranged for bringing the probe tip in contact with the sample surface. The method comprises controlling, by a controller, an actuator system of the device for moving the probe to the sample surface, and receiving, by the controller, a sensor signal indicative of at least one operational parameter of the probe for providing feedback to perform said controlling.
    Type: Application
    Filed: April 28, 2015
    Publication date: February 23, 2017
    Inventors: Hamed Sadeghian Marnani, Geerten Frans Ijsbrand Kramer, Teunis Comelis van den Dool
  • Patent number: 9476908
    Abstract: An object is mounted on a surface of a sample carrier. Properties of the surface of the object are measured and/or modified by means of a plurality of independently movable heads, each comprising a microscopic probe. The heads being located between the surface of a reference grid plate and the surface of the sample carrier. Head specific target locations are selected for the heads. Each head is moved over the surface of the reference grid plate, to the target location of the head. During movement a position of the head is determined from markings on the reference grid plate sensed by sensor in the head. When the sensor has indicated that the head is at the target location selected for the head a force between the head and the reference grid plate is switched to seat and/or clamp the head on the reference grid plate.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: October 25, 2016
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Rens Van Den Braber, Teunis Cornelis Van Den Dool, Hamed Sadeghian Marnani, Niek Rijnveld
  • Patent number: 9329202
    Abstract: A method is presented for calibrating a cantilever, such as a scanning probe microscope cantilever (SPM cantilever). The cantilever to be calibrated comprises at least a first and a second layer having a mutually different thermal expansion coefficient, the method comprising the steps of: controllably causing a temperature distribution along the cantilever, measuring a spatial state of the cantilever, computing a mechanical property from the observed spatial state caused by controllably changing the temperature. Also a calibration arrangement and a scanning probe microscope provided with the calibration arrangement are presented.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: May 3, 2016
    Assignee: NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETENSCHAPPELIJK ONDERZOEK TNO
    Inventor: Hamed Sadeghian Marnani
  • Patent number: 9274138
    Abstract: A scanning probe microscopy device for mapping nanostructures on a sample surface of a sample is provided. The device may comprise a plurality probes for scanning the sample surface, and one or more motion actuators for enabling motion of the probes relative to the sample, wherein each of the plurality of probes comprises a probing tip mounted on a cantilever arranged for bringing the probing tip in contact with the sampling surface for enabling the scanning. The device may further comprise a plurality of Z-position detectors for determining a position of each probing tip along a Z-direction when the probing tip is in contact with the sample surface, wherein the Z-direction is a direction transverse to the sample surface, for enabling mapping of the nanostructures.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: March 1, 2016
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Hamed Sadeghian Marnani, Teunis Cornelis van den Dool, Niek Rijnveld
  • Publication number: 20150323561
    Abstract: An object is mounted on a surface of a sample carrier. Properties of the surface of the object are measured and/or modified by means of a plurality of independently movable heads, each comprising a microscopic probe. The heads being located between the surface of a reference grid plate and the surface of the sample carrier. Head specific target locations are selected for the heads. Each head is moved over the surface of the reference grid plate, to the target location of the head. During movement a position of the head is determined from markings on the reference grid plate sensed by sensor in the head. When the sensor has indicated that the head is at the target location selected for the head a force between the head and the reference grid plate is switched to seat and/or clamp the head on the reference grid plate.
    Type: Application
    Filed: June 27, 2013
    Publication date: November 12, 2015
    Inventors: Rens VAN DEN BRABER, Teunis Cornelis VAN DEN DOOL, Hamed SADEGHIAN MARNANI, Niek RIJNVELD
  • Publication number: 20150293145
    Abstract: A method is presented for calibrating a cantilever, such as a scanning probe microscope cantilever (SPM cantilever). The cantilever to be calibrated comprises at least a first and a second layer having a mutually different thermal expansion coefficient, the method comprising the steps of: controllably causing a temperature distribution along the cantilever, measuring a spatial state of the cantilever, computing a mechanical property from the observed spatial state caused by controllably changing the temperature. Also a calibration arrangement and a scanning probe microscope provided with the calibration arrangement are presented.
    Type: Application
    Filed: March 22, 2013
    Publication date: October 15, 2015
    Inventor: Hamed Sadeghian Marnani
  • Publication number: 20150185248
    Abstract: A scanning probe microscopy device for mapping nanostructures on a sample surface of a sample is provided. The device may comprise a plurality probes for scanning the sample surface, and one or more motion actuators for enabling motion of the probes relative to the sample, wherein each of the plurality of probes comprises a probing tip mounted on a cantilever arranged for bringing the probing tip in contact with the sampling surface for enabling the scanning. The device may further comprise a plurality of Z-position detectors for determining a position of each probing tip along a Z-direction when the probing tip is in contact with the sample surface, wherein the Z-direction is a direction transverse to the sample surface, for enabling mapping of the nanostructures.
    Type: Application
    Filed: June 24, 2013
    Publication date: July 2, 2015
    Inventors: Hamed Sadeghian Marnani, Teunis Cornelis van den Dool, Niek Rijnveld
  • Publication number: 20150013038
    Abstract: The arrangement for calibrating probes comprises a source (10) of coherent photon radiation and at least one optically based strain sensor (12a) for measuring an amount of strain (?). The at least one optically based strain sensor is optically coupled to said source of coherent photon radiation. The arrangement further comprises at least one calibration lever (14) having a surface for placement of a tip (21) of a probe (2) to be calibrated, and that is mechanically coupled to the at least one optically based strain sensor for converting a force (F) exerted by said tip at said surface into an amount of strain in the optically based strain sensor. The arrangement further comprises at least one probe holder (24) for holding the probe (2) to be calibrated, the at least one probe holder having a controllable position in at least a direction (y) transverse to the surface of the calibration lever (14).
    Type: Application
    Filed: December 21, 2012
    Publication date: January 8, 2015
    Inventor: Hamed Sadeghian Marnani
  • Patent number: 8914910
    Abstract: The arrangement for calibrating probes comprises a source (10) of coherent photon radiation and at least one optically based strain sensor (12a) for measuring an amount of strain (?). The at least one optically based strain sensor is optically coupled to said source of coherent photon radiation. The arrangement further comprises at least one calibration lever (14) having a surface for placement of a tip (21) of a probe (2) to be calibrated, and that is mechanically coupled to the at least one optically based strain sensor for converting a force (F) exerted by said tip at said surface into an amount of strain in the optically based strain sensor. The arrangement further comprises at least one probe holder (24) for holding the probe (2) to be calibrated, the at least one probe holder having a controllable position in at least a direction (y) transverse to the surface of the calibration lever (14).
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: December 16, 2014
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventor: Hamed Sadeghian Marnani