Patents by Inventor Hamza Yilmaz

Hamza Yilmaz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9412684
    Abstract: A semiconductor package and it manufacturing method includes a lead frame having a die pad, and a source lead with substantially a V groove disposed on a top surface. A semiconductor chip disposed on the die pad. A metal plate connected to a top surface electrode of the chip having a bent extension terminated in the V groove in contact with at least one of the V groove sidewalls.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: August 9, 2016
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Yan Xun Xue, Yueh-Se Ho, Hamza Yilmaz, Anup Bhalla, Jun Lu, Kai Liu
  • Patent number: 9397029
    Abstract: A power semiconductor package device and a method of preparation the device are disclosed. The package device includes a die paddle, a first pin, a second pin, and a semiconductor chip attached to the die paddle. A first electrode, a second electrode and a third electrode of the semiconductor chip are connected to the first pin, the second pin and the die paddle respectively. A plastic package body covers the semiconductor chip, the die paddle, the first pin and the second pin. The first pin and the second pin are located near two adjacent corners of the plastic package body. The bottom surface and two side surfaces of each of the first pin and the second pin are exposed from the plastic package body. Locking mechanisms are constructed to prevent the first pin and the second pin from falling off the power semiconductor package device during a manufacturing cutting process. Portions of the first pin, portions of the second pin, and portions of the plastic package body can be cut off.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: July 19, 2016
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Yan Xun Xue, Hamza Yilmaz, Yueh-Se Ho, Jun Lu, De Mei Gong
  • Patent number: 9391005
    Abstract: A power semiconductor package has an ultra thin chip with front side molding to reduce substrate resistance; a lead frame unit with grooves located on both side leads provides precise positioning for connecting numerous bridge-shaped metal clips to the front side of the side leads. The bridge-shaped metal clips are provided with bridge structure and half or fully etched through holes for relieving superfluous solder during manufacturing process.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: July 12, 2016
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Yan Xun Xue, Yueh-Se Ho, Hamza Yilmaz, Jun Lu, Lei Shi, Liang Zhao, Ping Huang
  • Publication number: 20160197169
    Abstract: Semiconductor power devices can be formed on substrate structure having a lightly doped semiconductor substrate of a first conductivity type or a second conductivity type opposite to the first conductivity type. A semiconductive first buffer layer of the first conductivity type formed above the substrate. A doping concentration of the first buffer layer is greater than a doping concentration of the substrate. A second buffer layer of the second conductivity type formed above the first buffer layer. An epitaxial layer of the second conductivity type formed above the second buffer layer. One or more heavily doped regions of the second conductivity type are formed through portions of the first buffer layer from the second buffer layer and into corresponding portions of the substrate. This abstract is provided with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: March 16, 2016
    Publication date: July 7, 2016
    Inventors: Madhur Bobde, Jun Hu, Lingpeng Guan, Hamza Yilmaz, Lei Zhang, Jongoh Kim
  • Publication number: 20160190309
    Abstract: A semiconductor power device may include a lightly doped layer formed on a heavily doped layer. One or more devices are formed in the lightly doped layer. Each device may include a body region, a source region, and one or more gate electrodes formed in corresponding trenches in the lightly doped region. Each of the trenches has a depth in a first dimension, a width in a second dimension and a length in a third dimension. The body region is of opposite conductivity type to the lightly and heavily doped layers. The source region is formed proximate the upper surface. One or more deep contacts are formed at one or more locations along the third dimension proximate one or more of the trenches. The contacts extend in the first direction from the upper surface into the lightly doped layer and are in electrical contact with the source region.
    Type: Application
    Filed: March 4, 2016
    Publication date: June 30, 2016
    Inventors: Hamza Yilmaz, Daniel Ng, Daniel Calafut, Madhur Bobde, Anup Bhalla, Ji Pan, Yeeheng Lee, Jongoh Kim
  • Publication number: 20160190265
    Abstract: A plurality of gate trenches is formed into a semiconductor substrate in an active cell region. One or more other trenches are formed in a different region. Each gate trench has a first conductive material in lower portions and a second conductive material in upper portions. In the gate trenches, a first insulating layer separates the first conductive material from the substrate, a second insulating layer separates the second conductive material from the substrate and a third insulating material separates the first and second conductive materials. The other trenches contain part of the first conductive material in a half-U shape in lower portions and part of the second conductive material in upper portions. In the other trenches, the third insulating layer separates the first and second conductive materials. The first insulating layer is thicker than the third insulating layer, and the third insulating layer is thicker than the second.
    Type: Application
    Filed: March 4, 2016
    Publication date: June 30, 2016
    Inventors: Yeeheng Lee, Lingpeng Guan, Hongyong Xue, Yiming Gu, Yang Xiang, Terence Huang, Sekar Ramamoorthy, Wenjun Li, Hong Chang, Madhur Bobde, Paul Thorup, Hamza Yilmaz
  • Publication number: 20160172482
    Abstract: A plurality of gate trenches is formed into an epitaxial region of a first conductivity type over a semiconductor substrate. One or more contact trenches are formed into the epitaxial region, each between two adjacent gate trenches. One or more source regions of the first conductivity type are formed in a top portion of the epitaxial region between a contact trench and a gate trench. A barrier metal is formed inside each contact trench. Each gate trench is substantially filled with a conductive material separated from trench walls by a layer of dielectric material to form a gate. A heavily doped well region of a conductivity opposite the first type is provided in the epitaxial region proximate a bottom portion of each of the contact trenches. A horizontal width of a gap between the well region and the gate trench is about 0.05 ?m to 0.2 ?m.
    Type: Application
    Filed: December 10, 2014
    Publication date: June 16, 2016
    Inventors: Madhur Bobde, Sik Lui, Hamza Yilmaz, Jongoh Kim, Daniel Ng
  • Publication number: 20160155688
    Abstract: A power semiconductor package has an ultra thin chip with front side molding to reduce substrate resistance; a lead frame unit with grooves located on both side leads provides precise positioning for connecting numerous bridge-shaped metal clips to the front side of the side leads. The bridge-shaped metal clips are provided with bridge structure and half or fully etched through holes for relieving superfluous solder during manufacturing process.
    Type: Application
    Filed: September 20, 2013
    Publication date: June 2, 2016
    Inventors: Yan Xun Xue, Yueh-Se Ho, Hamza Yilmaz, Jun Lu, Lei Shi, Liang Zhao, Ping Huang
  • Patent number: 9356022
    Abstract: A semiconductor device may have an active device region containing a plurality of active devices and a termination structure that surrounds the active device region. The termination structure includes a first conductive region that surrounds the active device region, an insulator region that surrounds the first conductive region, and a second conductive region that surrounds the first conductive region and the insulator region. The active device region and termination structure are formed into a semiconductor material of a first conductivity type. The first conductive region is electrically connected to a gate metal and the second conductive region is connected to a drain metal.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: May 31, 2016
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Yeeheng Lee, Madhur Bobde, Daniel Calafut, Hamza Yilmaz, Xiaobin Wang, Ji Pan, Hong Chang, Jongoh Kim
  • Patent number: 9349796
    Abstract: Semiconductor devices includes a thin epitaxial layer (nanotube) formed on sidewalls of mesas formed in a semiconductor layer. In one embodiment, a semiconductor device includes a first epitaxial layer and a second epitaxial layer formed on mesas of the semiconductor layer. The thicknesses and doping concentrations of the first and second epitaxial layers and the mesa are selected to achieve charge balance in operation. In another embodiment, the semiconductor body is lightly doped and the thicknesses and doping concentrations of the first and second epitaxial layers are selected to achieve charge balance in operation.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: May 24, 2016
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Hamza Yilmaz, Xiaobin Wang, Anup Bhalla, John Chen, Hong Chang
  • Publication number: 20160141411
    Abstract: Aspects of the present disclosure describe a high density trench-based power MOSFETs with self-aligned source contacts and methods for making such devices. The source contacts are self-aligned with spacers. The MOSFETS also may include a depletable shield in a lower portion of the substrate. The depletable shield may be configured such that during a high drain bias the shield substantially depletes. It is emphasized that this abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: January 22, 2016
    Publication date: May 19, 2016
    Inventors: Madhur Bobde, Hamza Yilmaz, Sik Lui, Daniel Ng
  • Patent number: 9337131
    Abstract: An ultrathin power semiconductor package with high thermal dissipation performance and its preparation method are disclosed. The package includes a lead frame unit with a staggered structure including an upper section and a lower section. A thin layer is attached on the surface of the lead frame unit having a plurality of contact holes on the upper section and at least one opening on the lower section. A semiconductor chip is attached on the opening on the lower section of the lead frame unit and then a plurality of metal bumps are deposited, where one metal bump is formed on each contact hole on the upper section and on each of the electrodes on the top surface of the semiconductor chip.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: May 10, 2016
    Assignee: Alpha and Omega Semiconductor (Cayman) Ltd.
    Inventors: Yan Huo, Hamza Yilmaz, Jun Lu, Ming-Chen Lu, Zhi Qiang Niu, Yan Xun Xue, Demei Gong
  • Patent number: 9318587
    Abstract: Semiconductor power devices can be formed on substrate structure having a lightly doped semiconductor substrate of a first conductivity type or a second conductivity type opposite to the first conductivity type. A semiconductive first buffer layer of the first conductivity type formed above the substrate. A doping concentration of the first buffer layer is greater than a doping concentration of the substrate. A second buffer layer of the second conductivity type formed above the first buffer layer. An epitaxial layer of the second conductivity type formed above the second buffer layer. A doping concentration of the epitaxial layer is greater than a doping concentration of the second buffer layer. This abstract is provided to allow a searcher or reader to quickly ascertain the subject matter of the disclosure with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: April 19, 2016
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Madhur Bobde, Jun Hu, Lingpeng Guan, Hamza Yilmaz, Lei Zhang, Jongoh Kim
  • Patent number: 9318424
    Abstract: The present invention discloses the MCSP power semiconductor device and the preparation method thereof. In the present invention method, a metal foil layer is attached to the back of the wafer using a conductive adhesive layer and a composite tape is laminated on the metal foil layer. Thus, individual MCSP power semiconductor devices are separated by cutting the wafer, the conductive adhesive, the metal foil layer and the composite tape along the scribe lines between adjacent semiconductor chips formed on the front of the wafer.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: April 19, 2016
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Zhiqiang Niu, Jun Lu, Hamza Yilmaz, Hongtao Gao
  • Publication number: 20160104661
    Abstract: The invention relates to a semiconductor package of a flip chip and a method for making the semiconductor package. The semiconductor chip comprises a metal-oxide-semiconductor field effect transistor. On a die paddle including a first base, a second base and a third base, half-etching or punching is performed on the top surfaces of the first base and the second base to obtain plurality of grooves that divide the top surface of the first base into a plurality of areas comprising multiple first connecting areas, and divide the top surface of the second base into a plurality of areas comprising at least a second connecting area. The semiconductor chip is connected to the die paddle at the first connecting areas and the second connecting area.
    Type: Application
    Filed: June 7, 2013
    Publication date: April 14, 2016
    Inventors: Yan Xun Xue, Yueh-Se Ho, Hamza Yilmaz, Jun Lu
  • Patent number: 9312381
    Abstract: A lateral superjunction MOSFET device includes a gate structure, a first column connected to the lateral superjunction structure and a second column disposed in close proximity to the first column. The lateral superjunction MOSFET device includes the first column to receive current from the channel when the MOSFET is turned on and to distribute the channel current to the lateral superjunction structure functioning as the drain drift region. The second column disposed near the first column is used to pinch off the first column when the MOSFET device is to be turned off and to block the high voltage being sustained by the MOSFET device at the drain terminal from reaching the gate structure. In some embodiments, the lateral superjunction MOSFET device further includes termination structures for the drain, source and body contact doped region fingers.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: April 12, 2016
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Madhur Bobde, Lingpeng Guan, Karthik Padmanabhan, Hamza Yilmaz
  • Publication number: 20160099315
    Abstract: Semiconductor devices includes a thin epitaxial layer (nanotube) formed on sidewalls of mesas formed in a semiconductor layer. In one embodiment, a semiconductor device includes a first epitaxial layer and a second epitaxial layer formed on mesas of the semiconductor layer. The thicknesses and doping concentrations of the first and second epitaxial layers and the mesa are selected to achieve charge balance in operation. In another embodiment, the semiconductor body is lightly doped and the thicknesses and doping concentrations of the first and second epitaxial layers are selected to achieve charge balance in operation.
    Type: Application
    Filed: December 10, 2015
    Publication date: April 7, 2016
    Inventors: Hamza Yilmaz, Xiaobin Wang, Anup Bhalla, John Chen, Hong Chang
  • Patent number: 9305870
    Abstract: A preparation method for a power semiconductor device includes: providing a lead frame containing a plurality of chip mounting units, one side edge of a die paddle of each chip mounting unit is bent and extended upwardly and one lead connects to the bent side edge of the die paddle and extends in an opposite direction from the die paddle; attaching a semiconductor chip to the top surface of the die paddle; forming metal bumps on each electrode at the front of the semiconductor chip with a top end of each metal bump protruding out of a plane of the top surface of the lead; heating the metal bump and pressing a top end of each metal bump by a pressing plate forming a flat top end surface that is flush with the top surface of the lead; and cutting the lead frame to separate individual chip mounting units.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: April 5, 2016
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Yan Xun Xue, Hamza Yilmaz, Yueh-Se Ho, Jun Lu
  • Publication number: 20160093560
    Abstract: An ultrathin power semiconductor package with high thermal dissipation performance and its preparation method are disclosed. The package includes a lead frame unit with a staggered structure including an upper section and a lower section. A thin layer is attached on the surface of the lead frame unit having a plurality of contact holes on the upper section and at least one opening on the lower section. A semiconductor chip is attached on the opening on the lower section of the lead frame unit and then a plurality of metal bumps are deposited, where one metal bump is formed on each contact hole on the upper section and on each of the electrodes on the top surface of the semiconductor chip.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 31, 2016
    Inventors: Yan Huo, Hamza Yilmaz, Jun Lu, Ming-Chen Lu, Zhi Qiang Niu, Yan Xun Xue, Demei Gong
  • Publication number: 20160093559
    Abstract: A method of manufacturing a semiconductor package having a small gate clip is disclosed. A first and second semiconductor chips, each of which includes a source electrode and a gate electrode at a top surface, are attached on two adjacent lead frame units of a lead frame such that the lead frame unit with the first chip formed thereon is rotated 180 degrees in relation to the other lead frame unit with the second semiconductor chip formed thereon. A first and second clip sets are mounted on the first and second semiconductor chips, wherein the first clip set is connected to the gate electrode of the first chip, the source electrode of the second chip, and their corresponding leads and the second clip set is connected to the gate electrode of the second chip, the source electrode of the first chip and their corresponding leads.
    Type: Application
    Filed: September 10, 2015
    Publication date: March 31, 2016
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Yan Xun Xue, Hamza Yilmaz, Yueh-Se Ho, Jun Lu, Ming-Chen Lu, Hongtao Gao