Patents by Inventor Hamza Yilmaz

Hamza Yilmaz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9502554
    Abstract: Aspects of the present disclosure describe a high density trench-based power MOSFETs with self-aligned source contacts and methods for making such devices. The source contacts are self-aligned with spacers. The MOSFETS also may include a depletable shield in a lower portion of the substrate. The depletable shield may be configured such that during a high drain bias the shield substantially depletes. It is emphasized that this abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: November 22, 2016
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Madhur Bobde, Hamza Yilmaz, Sik Lui, Daniel Ng
  • Publication number: 20160336394
    Abstract: A method of manufacturing an insulated gate bipolar transistor (IGBT) device comprising 1) preparing a semiconductor substrate with an epitaxial layer of a first conductivity type supported on the semiconductor substrate of a second conductivity type; 2) applying a gate trench mask to open a first trench and second trench followed by forming a gate insulation layer to pad the trench and filling the trench with a polysilicon layer to form the first trench gate and the second trench gate; 3) implanting dopants of the first conductivity type to form an upper heavily doped region in the epitaxial layer; and 4) forming a planar gate on top of the first trench gate and apply implanting masks to implant body dopants and source dopants to form a body region and a source region near a top surface of the semiconductor substrate.
    Type: Application
    Filed: May 14, 2015
    Publication date: November 17, 2016
    Inventors: Jun Hu, Madhur Bobde, Hamza Yilmaz
  • Publication number: 20160329426
    Abstract: Embodiments of the present disclosure provide a contact structure in a split-gate trench transistor device for electrically connecting the top electrode to the bottom electrode inside the trench. The transistor device comprises a semiconductor substrate and one or more trenches formed in the semiconductor substrate. The trenches are lined with insulating materials along the sidewalls inside the trenches. Each trench has a bottom electrode in lower portions of the trench and a top electrode in its upper portions. The bottom electrode and the top electrode are separated by an insulating material. A contact structure filled with conductive materials is formed in each trench in an area outside of an active region of the device to connect the top electrode and the bottom electrode. It is emphasized that this abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure.
    Type: Application
    Filed: July 19, 2016
    Publication date: November 10, 2016
    Inventors: Yeeheng Lee, Sik Lui, Jongoh Kim, Hong Chang, Madhur Bobde, Lingpeng Guan, Hamza Yilmaz
  • Publication number: 20160322459
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate and the semiconductor substrate has a plurality of trenches. Each of the trenches is filled with a plurality of epitaxial layers of alternating conductivity types constituting nano tubes functioning as conducting channels stacked as layers extending along a sidewall direction with a “Gap Filler” layer filling a merging-gap between the nano tubes disposed substantially at a center of each of the trenches. The “Gap Filler” layer can be very lightly doped Silicon or grown and deposited dielectric layer. In an exemplary embodiment, the plurality of trenches are separated by pillar columns each having a width approximately half to one-third of a width of the trenches.
    Type: Application
    Filed: May 1, 2015
    Publication date: November 3, 2016
    Inventors: Hamza Yilmaz, Daniel Ng, Lingping Guan, Anup Bhalla, Wilson Ma, Moses Ho, John Chen
  • Patent number: 9484452
    Abstract: A plurality of gate trenches is formed into an epitaxial region of a first conductivity type over a semiconductor substrate. One or more contact trenches are formed into the epitaxial region, each between two adjacent gate trenches. One or more source regions of the first conductivity type are formed in a top portion of the epitaxial region between a contact trench and a gate trench. A barrier metal is formed inside each contact trench. Each gate trench is substantially filled with a conductive material separated from trench walls by a layer of dielectric material to form a gate. A heavily doped well region of a conductivity opposite the first type is provided in the epitaxial region proximate a bottom portion of each of the contact trenches. A horizontal width of a gap between the well region and the gate trench is about 0.05 ?m to 0.2 ?m.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: November 1, 2016
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Madhur Bobde, Sik Lui, Hamza Yilmaz, Jongoh Kim, Daniel Ng
  • Patent number: 9484453
    Abstract: Aspects of the present disclosure describe a high density trench-based power. The active devices may have a two-step gate oxide. A lower portion may have a thickness that is larger than the thickness of an upper portion of the gate oxide. A lightly doped sub-body layer may be formed below a body region between two or more adjacent active device structures of the plurality. The sub-body layer extends from a depth of the upper portion of the gate oxide to a depth of the lower portion of the gate oxide It is emphasized that this abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: November 1, 2016
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Hamza Yilmaz, Madhur Bobde, Hong Chang, Yeeheng Lee, Daniel Calafut, Jongoh Kim, Sik Lui, John Chen
  • Publication number: 20160315039
    Abstract: A hybrid packaging multi-chip semiconductor device comprises a lead frame unit, a first semiconductor chip, a second semiconductor chip, a first interconnecting structure and a second interconnecting structure, wherein the first semiconductor chip is attached on a first die paddle and the second semiconductor chip is flipped and attached on a third pin and a second die paddle, the first interconnecting structure electrically connecting a first electrode at a front surface of the first semiconductor chip and a third electrode at a back surface of the second semiconductor chip and a second electrode at the front surface of the first semiconductor chip is electrically connected by second interconnecting structure.
    Type: Application
    Filed: July 7, 2016
    Publication date: October 27, 2016
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Hamza Yilmaz, Yan Xun Xue, Jun Lu, Peter Wilson, Yan Huo, Zhiqiang Niu, Ming-Chen Lu
  • Publication number: 20160307830
    Abstract: A combined packaged power semiconductor device includes flipped top source low-side MOSFET electrically connected to top surface of a die paddle, first metal interconnection plate connecting between bottom drain of a high-side MOSFET or top source of a flipped high-side MOSFET to bottom drain of the low-side MOSFET, and second metal interconnection plate stacked on top of the high-side MOSFET chip. The high-side, low-side MOSFET and the IC controller can be packaged three-dimensionally reducing the overall size of semiconductor devices and can maximize the chip's size within a package of the same size and improves the performance of the semiconductor devices. The top source of flipped low-side MOSFET is connected to the top surface of the die paddle and thus is grounded through the exposed bottom surface of die paddle, which simplifies the shape of exposed bottom surface of the die paddle and maximizes the area to facilitate heat dissipation.
    Type: Application
    Filed: June 24, 2016
    Publication date: October 20, 2016
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Yueh-Se Ho, Hamza Yilmaz, Yan Yun Xue, Jun Lu
  • Patent number: 9472491
    Abstract: A method of manufacturing a semiconductor package having a small gate clip is disclosed. A first and second semiconductor chips, each of which includes a source electrode and a gate electrode at a top surface, are attached on two adjacent lead frame units of a lead frame such that the lead frame unit with the first chip formed thereon is rotated 180 degrees in relation to the other lead frame unit with the second semiconductor chip formed thereon. A first and second clip sets are mounted on the first and second semiconductor chips, wherein the first clip set is connected to the gate electrode of the first chip, the source electrode of the second chip, and their corresponding leads and the second clip set is connected to the gate electrode of the second chip, the source electrode of the first chip and their corresponding leads.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: October 18, 2016
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Yan Xun Xue, Hamza Yilmaz, Yueh-Se Ho, Jun Lu, Ming-Chen Lu, Hongtao Gao
  • Publication number: 20160300909
    Abstract: Semiconductor devices includes a thin epitaxial layer (nanotube) formed on sidewalls of mesas formed in a semiconductor layer. In one embodiment, a semiconductor device includes a first epitaxial layer and a second epitaxial layer formed on mesas of the semiconductor layer. The thicknesses and doping concentrations of the first and second epitaxial layers and the mesa are selected to achieve charge balance in operation. In another embodiment, the semiconductor body is lightly doped and the thicknesses and doping concentrations of the first and second epitaxial layers are selected to achieve charge balance in operation.
    Type: Application
    Filed: April 12, 2016
    Publication date: October 13, 2016
    Inventors: Hamza Yilmaz, Xiaobin Wang, Anup Bhalla, John Chen, Hong Chang
  • Publication number: 20160284794
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate and having an active cell area and an edge termination area the edge termination area wherein the edge termination area comprises a superjunction structure having doped semiconductor columns of alternating conductivity types with a charge imbalance between the doped semiconductor columns to generate a saddle junction electric field in the edge termination.
    Type: Application
    Filed: January 4, 2016
    Publication date: September 29, 2016
    Inventors: Madhur Bobde, Lingpeng Guan, Anup Bhalla, Hamza Yilmaz
  • Patent number: 9450050
    Abstract: This invention discloses configurations and methods to manufacture lateral power device including a super-junction structure with an avalanche clamp diode formed between the drain and the gate. The lateral super-junction structure reduces on-resistance, while the structural enhancements, including an avalanche clamping diode and an N buffer region, increase the breakdown voltage between substrate and drain and improve unclamped inductive switching (UIS) performance.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: September 20, 2016
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Madhur Bobde, Anup Bhalla, Hamza Yilmaz, Wilson Ma, Lingping Guan, Yeeheng Lee, John Chen
  • Patent number: 9450083
    Abstract: A semiconductor device includes a semiconductor substrate of a first conductivity type. A first conductivity type epitaxial layer disposed on a top surface of the substrate includes a surface shielded region above a less heavily doped voltage blocking region. A body region of a second conductivity type opposite the first conductivity type is disposed near a top surface of the surface shielded region. A first conductivity type source region is disposed near the top surface inside the body region. A drain is disposed at a bottom surface of the substrate. A gate overlaps portions of the source and body regions. Gate insulation separates the gate from the source and body regions. First and second trenches formed in the surface shielded region are lined with trench insulation material and filled with electrically conductive trench filling material. Second conductivity type buried doped regions are positioned below the first and second trenches, respectively.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: September 20, 2016
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Anup Bhalla, Hamza Yilmaz, Madhur Bobde, Lingpeng Guan, Jun Hu, Jongoh Kim, Yongping Ding
  • Patent number: 9450045
    Abstract: A fabrication method to form a lateral superjunction structure in a semiconductor device uses N and P type ion implantations into a base epitaxial layer. In some embodiments, the base epitaxial layer is an intrinsic epitaxial layer or a lightly doped epitaxial layer. The method performs simultaneous N and P type ion implantations into the base epitaxial layer. The epitaxial and implantation processes are repeated successively to form multiple implanted base epitaxial layers on a semiconductor base layer. After the desired number of implanted base epitaxial layers is formed, the semiconductor structure is subjected to annealing to form a lateral superjunction structure including alternate N and P type thin semiconductor regions. In particular, the alternating N and P type thin superjunction layers are formed by the ion implantation process and subsequent annealing. The fabrication method of the present invention ensures good charge control in the lateral superjunction structure.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: September 20, 2016
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Madhur Bobde, Lingpeng Guan, Karthik Padmanabhan, Hamza Yilmaz
  • Patent number: 9450088
    Abstract: Aspects of the present disclosure describe a high density trench-based power MOSFET with self-aligned source contacts. The source contacts are self-aligned with a first insulative spacer and a second insulative spacer, wherein the first spacer is resistant to an etching process that will selectively remove the material the second spacer is made from. It is emphasized that this abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: September 20, 2016
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Yeeheng Lee, Hong Chang, Jongoh Kim, Sik Lui, Hamza Yilmaz, Madhur Bobde, Daniel Calafut, John Chen
  • Publication number: 20160260814
    Abstract: This invention discloses semiconductor power device that includes a plurality of top electrical terminals disposed near a top surface of a semiconductor substrate. Each and every one of the top electrical terminals comprises a terminal contact layer formed as a silicide contact layer near the top surface of the semiconductor substrate. The trench gates of the semiconductor power device are opened from the top surface of the semiconductor substrate and each and every one of the trench gates comprises the silicide layer configured as a recessed silicide contact layer disposed on top of every on of the trench gates slightly below a top surface of the semiconductor substrate surround the trench gate.
    Type: Application
    Filed: January 5, 2016
    Publication date: September 8, 2016
    Inventors: Hamza Yilmaz, John Chen, Daniel Ng, Wenjun Li
  • Patent number: 9437587
    Abstract: A semiconductor device package comprises a lead frame having a die paddle comprising a first chip installation area and a second chip installation area, a recess area formed in the first chip installation area, and multiple metal pillars formed in the recess area, a notch divides the first chip installation area into a transverse base extending transversely and a longitudinal base extending longitudinally, and separates the recess area into a transverse recess part formed in the transverse base and a longitudinal recess part formed in longitudinal base; a portion of a transverse extending part connecting to an external pin extends into a portion inside of the notch.
    Type: Grant
    Filed: January 19, 2014
    Date of Patent: September 6, 2016
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Xiaotian Zhang, Hamza Yilmaz, Jun Lu, Xiaoguang Zeng, Ming-Chen Lu
  • Patent number: 9437530
    Abstract: A combined packaged power semiconductor device includes flipped top source low-side MOSFET electrically connected to top surface of a die paddle, first metal interconnection plate connecting between bottom drain of a high-side MOSFET or top source of a flipped high-side MOSFET to bottom drain of the low-side MOSFET, and second metal interconnection plate stacked on top of the high-side MOSFET chip. The high-side, low-side MOSFET and the IC controller can be packaged three-dimensionally reducing the overall size of semiconductor devices and can maximize the chip's size within a package of the same size and improves the performance of the semiconductor devices. The top source of flipped low-side MOSFET is connected to the top surface of the die paddle and thus is grounded through the exposed bottom surface of die paddle, which simplifies the shape of exposed bottom surface of the die paddle and maximizes the area to facilitate heat dissipation.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: September 6, 2016
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Yueh-Se Ho, Hamza Yilmaz, Yan Yun Xue, Jun Lu
  • Patent number: 9431328
    Abstract: A power semiconductor package and a method of preparation are disclosed. The power semiconductor package includes a pair of first and second die paddles arranged side by side, a first semiconductor chip attached to the first die paddle, a second semiconductor chip attached to the second die paddle, a metal clip electrically connecting a first electrode at the top surface of the first semiconductor chip and a first electrode at the top surface of the second semiconductor chip to a second pin, a first conductive structure connecting a second electrode at the top surface of a first semiconductor chip to a first pin, and a second conductive structure connecting a second electrode at the top surface of the second semiconductor chip to a third pin. In examples of the present disclosure, double-chip common source technique for the source electrodes of two power MOSFETs is achieved by applying a T-shape metal clip.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: August 30, 2016
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Hamza Yilmaz, Yan Xun Xue, Jun Lu
  • Patent number: 9425181
    Abstract: A hybrid packaging multi-chip semiconductor device comprises a lead frame unit, a first semiconductor chip, a second semiconductor chip, a first interconnecting structure and a second interconnecting structure, wherein the first semiconductor chip is attached on a first die paddle and the second semiconductor chip is flipped and attached on a third pin and a second die paddle, the first interconnecting structure electrically connecting a first electrode at a front surface of the first semiconductor chip and a third electrode at a back surface of the second semiconductor chip and a second electrode at the front surface of the first semiconductor chip is electrically connected by second interconnecting structure.
    Type: Grant
    Filed: May 2, 2015
    Date of Patent: August 23, 2016
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Hamza Yilmaz, Yan Xun Xue, Jun Lu, Peter Wilson, Yan Huo, Zhiqiang Niu, Ming-Chen Lu