Patents by Inventor Hamza Yilmaz

Hamza Yilmaz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9876096
    Abstract: A plurality of gate trenches is formed into an epitaxial region of a first conductivity type over a semiconductor substrate. One or more contact trenches are formed into the epitaxial region, each between two adjacent gate trenches. One or more source regions of the first conductivity type are formed in a top portion of the epitaxial region between a contact trench and a gate trench. A barrier metal is formed inside each contact trench. Each gate trench is substantially filled with a conductive material separated from trench walls by a layer of dielectric material to form a gate . A heavily doped well region of a conductivity opposite the first type is provided in the epitaxial region proximate a bottom portion of each of the contact trenches. A horizontal width of a gap between the well region and the gate trench is about 0.05 ?m to 0.2 ?m.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: January 23, 2018
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Madhur Bobde, Sik Lui, Hamza Yilmaz, Jongoh Kim, Daniel Ng
  • Patent number: 9865678
    Abstract: A semiconductor device includes a semiconductor substrate and epitaxial layer of a first conductivity type with the epitaxial layer on a top surface of the substrate. A body region of a second conductivity type opposite the first conductivity type is disposed near a top surface of the epitaxial layer. A first conductivity type source region is inside the body region and a drain is at a bottom surface of the substrate. An inslated gate overlaps the source and body regions. First and second trenches in the epitaxial layer are lined with insulation material and filled with electrically conductive material. Second conductivity type buried regions are positioned below the trenches. Second conductivity type charge linking paths along one or more walls of the first trench electrically connect a first buried region to the body region. A second buried region is separated from the body region by portions of the expitaxial layer.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: January 9, 2018
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Anup Bhalla, Hamza Yilmaz, Madhur Bobde, Lingpeng Guan, Jun Hu, Jongoh Kim, Yongping Ding
  • Patent number: 9865694
    Abstract: A plurality of gate trenches is formed into a semiconductor substrate in an active cell region. One or more other trenches are formed in a different region. Each gate trench has a first conductive material in lower portions and a second conductive material in upper portions. In the gate trenches, a first insulating layer separates the first conductive material from the substrate, a second insulating layer separates the second conductive material from the substrate and a third insulating material separates the first and second conductive materials. The other trenches contain part of the first conductive material in a half-U shape in lower portions and part of the second conductive material in upper portions. In the other trenches, the third insulating layer separates the first and second conductive materials. The first insulating layer is thicker than the third insulating layer, and the third insulating layer is thicker than the second.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: January 9, 2018
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Yeeheng Lee, Lingpeng Guan, Hongyong Xue, Yiming Gu, Yang Xiang, Terence Huang, Sekar Ramamoorthy, Wenjun Li, Hong Chang, Madhur Bobde, Paul Thorup, Hamza Yilmaz
  • Publication number: 20170373139
    Abstract: A trench type power semiconductor device with improved breakdown voltage and UIS performance and a method for preparation the device are disclosed. The trench type power semiconductor device includes a first contact hole formed in a mesa in the active area and a second contact hole formed in a mesa in an active to termination intermediate area, where the first contact hole is deeper and wider than the second contact hole. The method comprises the steps of providing a semiconductor substrate, etching an epitaxial layer, depositing a conductive material, depositing an insulation passivation layer and etching through the insulation passivation layer.
    Type: Application
    Filed: July 10, 2017
    Publication date: December 28, 2017
    Applicant: Alpha and Omega Semiconductor (Cayman) Ltd.
    Inventors: Yongping Ding, Hamza Yilmaz, Xiaobin Wang, Madhur Bobde
  • Publication number: 20170373185
    Abstract: A semiconductor power device may include a lightly doped layer formed on a heavily doped layer. One or more devices are formed in the lightly doped layer. Each device includes a body region, a source region, and one or more gate electrodes formed in corresponding trenches in the lightly doped region. Each trench has a first dimension (depth), a a second dimension (width) and a third dimension (length). The body region is of opposite conductivity type to the lightly and heavily doped layers. An opening is formed between first and second trenches through an upper portion of the source region and a body contact region to the body region. A deep implant region of the second conductivity type is formed in the lightly doped layer below the body region. The deep implant region is vertically aligned to the opening and spaced away from a bottom of the opening.
    Type: Application
    Filed: August 18, 2017
    Publication date: December 28, 2017
    Inventors: Hamza Yilmaz, Daniel Ng, Daniel Calafut, Madhur Bobde, Anup Bhalla, Ji Pan, Yeeheng Lee, Jongoh Kim
  • Publication number: 20170373186
    Abstract: A semiconductor device, comprising: a substrate; an active gate trench in the substrate; a source polysilicon pickup trench in the substrate; a polysilicon electrode disposed in the source polysilicon pickup trench; a gate pickup trench in the substrate; a first conductive region and a second conductive region disposed in the gate pickup trench, the first conductive region and the second conductive region being separated by oxide, wherein at least a portion of the oxide surrounding the first conductive region in the gate pickup trench is thicker than at least a portion of the oxide under the second conductive region; and a body region in the substrate.
    Type: Application
    Filed: September 8, 2017
    Publication date: December 28, 2017
    Inventors: John Chen, Il Kwan Lee, Hong Chang, Wenjun Li, Anup Bhalla, Hamza Yilmaz
  • Patent number: 9854686
    Abstract: A preparation method of a thin power device comprising the steps of steps S1, S2 and S3. In step S1, a substrate is provided. The substrate comprises a first set of first contact pads and a second set of second contact pads arranged at a front surface and a back surface of the substrate respectively. Each first contact pad of the first set of contact pads is electrically connected with a respective second contact pad of the second set of contact pads via a respective interconnecting structure formed inside the substrate. A through opening is formed in the substrate aligning with a third contact pad attached to the back surface of the substrate. The third contact pad is not electrically connected with the first set of contact pads. In step S2, a semiconductor chip is embedded into the through opening. A back metal layer at a back surface of the semiconductor chip is attached to the third contact pad.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: December 26, 2017
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR (CAYMAN) LTD.
    Inventors: Yuping Gong, Yan Xun Xue, Ming-Chen Lu, Ping Huang, Jun Lu, Hamza Yilmaz
  • Patent number: 9852910
    Abstract: Various improvements in vertical transistors, such as IGBTs, are disclosed. The improvements include forming periodic highly-doped p-type emitter dots in the top surface region of a growth substrate, followed by growing the various transistor layers, followed by grounding down the bottom surface of the substrate, followed by a wet etch of the bottom surface to expose the heavily doped p+ layer. A metal contact is then formed over the p+ layer. In another improvement, edge termination structures utilize p-dopants implanted in trenches to create deep p-regions for shaping the electric field, and shallow p-regions between the trenches for rapidly removing holes after turn-off. In another improvement, a dual buffer layer using an n-layer and distributed n+ regions improves breakdown voltage and saturation voltage. In another improvement, p-zones of different concentrations in a termination structure are formed by varying pitches of trenches. In another improvement, beveled saw streets increase breakdown voltage.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: December 26, 2017
    Assignee: MaxPower Semiconductor Inc.
    Inventor: Hamza Yilmaz
  • Publication number: 20170365710
    Abstract: A lateral superjunction MOSFET device includes multiple transistor cells connected to a lateral superjunction structure, each transistor cell including a conductive gate finger, a source region finger, a body contact region finger and a drain region finger arranged laterally within each transistor cell. Each of the drain region fingers, the source region fingers and the body contact region fingers is a doped region finger having a termination region at an end of the doped region finger. The lateral superjunction MOSFET device further includes a termination structure formed in the termination region of each doped region finger and including one or more termination columns having the same conductivity type as the doped region finger and positioned near the end of the doped region finger. The one or more termination columns extend through the lateral superjunction structure and are electrically unbiased.
    Type: Application
    Filed: June 23, 2017
    Publication date: December 21, 2017
    Inventors: Madhur Bobde, Lingpeng Guan, Karthik Padmanabhan, Hamza Yilmaz
  • Publication number: 20170338307
    Abstract: Semiconductor devices includes a thin epitaxial layer (nanotube) formed on sidewalls of mesas formed in a semiconductor layer. In one embodiment, a semiconductor device includes a first semiconductor layer, a second semiconductor layer formed thereon and of the opposite conductivity type, and a first epitaxial layer formed on mesas of the second semiconductor layer. An electric field along a length of the first epitaxial layer is uniformly distributed.
    Type: Application
    Filed: June 8, 2017
    Publication date: November 23, 2017
    Inventors: Hamza Yilmaz, Xiaobin Wang, Anup Bhalla, John Chen, Hong Chang
  • Patent number: 9825128
    Abstract: Various improvements in vertical transistors, such as IGBTs, are disclosed. The improvements include forming periodic highly-doped p-type emitter dots in the top surface region of a growth substrate, followed by growing the various transistor layers, followed by grounding down the bottom surface of the substrate, followed by a wet etch of the bottom surface to expose the heavily doped p+ layer. A metal contact is then formed over the p+ layer. In another improvement, edge termination structures utilize p-dopants implanted in trenches to create deep p-regions for shaping the electric field, and shallow p-regions between the trenches for rapidly removing holes after turn-off. In another improvement, a dual buffer layer using an n-layer and distributed n+ regions improves breakdown voltage and saturation voltage. In another improvement, p-zones of different concentrations in a termination structure are formed by varying pitches of trenches. In another improvement, beveled saw streets increase breakdown voltage.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: November 21, 2017
    Assignee: MaxPower Semiconductor, Inc.
    Inventor: Hamza Yilmaz
  • Patent number: 9818829
    Abstract: Embodiments of the present disclosure provide a contact structure in a split-gate trench transistor device for electrically connecting the top electrode to the bottom electrode inside the trench. The transistor device comprises a semiconductor substrate and one or more trenches formed in the semiconductor substrate. The trenches are lined with insulating materials along the sidewalls inside the trenches. Each trench has a bottom electrode in lower portions of the trench and a top electrode in its upper portions. The bottom electrode and the top electrode are separated by an insulating material. A contact structure filled with conductive materials is formed in each trench in an area outside of an active region of the device to connect the top electrode and the bottom electrode. It is emphasized that this abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: November 14, 2017
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Yeeheng Lee, Sik Lui, Jongoh Kim, Hong Chang, Madhur Bobde, Lingpeng Guan, Hamza Yilmaz
  • Patent number: 9805933
    Abstract: Various improvements in vertical transistors, such as IGBTs, are disclosed. The improvements include forming periodic highly-doped p-type emitter dots in the top surface region of a growth substrate, followed by growing the various transistor layers, followed by grounding down the bottom surface of the substrate, followed by a wet etch of the bottom surface to expose the heavily doped p+ layer. A metal contact is then formed over the p+ layer. In another improvement, edge termination structures utilize p-dopants implanted in trenches to create deep p-regions for shaping the electric field, and shallow p-regions between the trenches for rapidly removing holes after turn-off. In another improvement, a dual buffer layer using an n-layer and distributed n+ regions improves breakdown voltage and saturation voltage. In another improvement, p-zones of different concentrations in a termination structure are formed by varying pitches of trenches. In another improvement, beveled saw streets increase breakdown voltage.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: October 31, 2017
    Assignee: MaxPower Semiconductor Inc.
    Inventor: Hamza Yilmaz
  • Patent number: 9793346
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate comprising a lightly doped layer formed on a heavily doped layer and having an active cell area and an edge termination area. The edge termination area comprises a plurality P-channel MOSFETs. By connecting the gate to the drain electrode, the P-channel MOSFET transistors formed on the edge termination are sequentially turned on when the applied voltage is equal to or greater than the threshold voltage Vt of the P-channel MOSFET transistors, thereby optimizing the voltage blocked by each region.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: October 17, 2017
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Hamza Yilmaz, Madhur Bobde
  • Patent number: 9793393
    Abstract: A semiconductor device includes a substrate, an active gate trench in the substrate; a source polysilicon pickup trench in the substrate; a polysilicon electrode disposed in the source polysilicon pickup trench; and a body region in the substrate. The top surface of the polysilicon electrode is below the bottom of the body region.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: October 17, 2017
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: John Chen, Il Kwan Lee, Hong Chang, Wenjun Li, Anup Bhalla, Hamza Yilmaz
  • Patent number: 9786583
    Abstract: A power semiconductor package device and a method of preparation the device are disclosed. The package device includes a die paddle, a first pin, a second pin, and a semiconductor chip attached to the die paddle. A first electrode, a second electrode and a third electrode of the semiconductor chip are connected to the first pin, the second pin and the die paddle respectively. A plastic package body covers the semiconductor chip, the die paddle, the first pin and the second pin. The first pin and the second pin are located near two adjacent corners of the plastic package body. The bottom surface and two side surfaces of each of the first pin and the second pin are exposed from the plastic package body. Locking mechanisms are constructed to prevent the first pin and the second pin from falling off the power semiconductor package device during a manufacturing cutting process. Portions of the first pin, portions of the second pin, and portions of the plastic package body can be cut off.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: October 10, 2017
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Yan Xun Xue, Hamza Yilmaz, Yueh-Se Ho, Jun Lu, De Mei Gong
  • Publication number: 20170288456
    Abstract: A smart plug that is partitioned into a plurality of printed circuit boards (PCBs) in a three dimensional manner to reduce its size. Aspects consider the effect of the possible increased internal temperature as the size of the smart plug is reduced. For example, thick metal foils connect various components of a smart plug to reduce heat dissipation within the smart plug. Also, a metal foil may transfer heat from contact metal on a PCB to a side wall of a plastic housing of the smart plug. The smart plug may comprise a computing device that obtains information identifying the attached electrical device and accesses device data about the time duration during which the attached electrical device exhibits transient characteristics. The computing device then uses the accessed data to effectively control the attached electrical device.
    Type: Application
    Filed: January 23, 2017
    Publication date: October 5, 2017
    Inventors: Dick Kwai Chan, Kam Wai Lam, JZ Zheng, Wai Yin Shum, Brenton James Judge, Hamza Yilmaz, Patrick Yeung, Wai Ming Wu
  • Publication number: 20170271441
    Abstract: A method of manufacturing an insulated gate bipolar transistor (IGBT) device comprising 1) preparing a semiconductor substrate with an epitaxial layer of a first conductivity type supported on the semiconductor substrate of a second conductivity type; 2) applying a gate trench mask to open a first trench and second trench followed by forming a gate insulation layer to pad the trench and filling the trench with a polysilicon layer to form the first trench gate and the second trench gate; 3) implanting dopants of the first conductivity type to form an upper heavily doped region in the epitaxial layer; and 4) forming a planar gate on top of the first trench gate and apply implanting masks to implant body dopants and source dopants to form a body region and a source region near a top surface of the semiconductor substrate.
    Type: Application
    Filed: May 21, 2017
    Publication date: September 21, 2017
    Inventors: Jun Hu, Madhur Bobde, Hamza Yilmaz
  • Patent number: 9768146
    Abstract: The present invention discloses small-size battery protection packages and provides a process of fabricating small-size battery protection packages. A battery protection package includes a first common-drain metal oxide semiconductor field effect transistor (MOSFET), a second common-drain MOSFET, a power control integrated circuit (IC), a plurality of solder balls, a plurality of conductive bumps, and a packaging layer. The power control IC is vertically stacked on top of the first and second common-drain MOSFETs. At least a majority portion of the power control IC and at least majority portions of the plurality of solder balls are embedded into the packaging layer.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: September 19, 2017
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Zhiqiang Niu, Yan Xun Xue, Man Sheng Hu, Jun Lu, Yueh-Se Ho, Hamza Yilmaz
  • Publication number: 20170250246
    Abstract: Various improvements in vertical transistors, such as IGBTs, are disclosed. The improvements include forming periodic highly-doped p-type emitter dots in the top surface region of a growth substrate, followed by growing the various transistor layers, followed by grounding down the bottom surface of the substrate, followed by a wet etch of the bottom surface to expose the heavily doped p+ layer. A metal contact is then formed over the p+ layer. In another improvement, edge termination structures utilize p-dopants implanted in trenches to create deep p-regions for shaping the electric field, and shallow p-regions between the trenches for rapidly removing holes after turn-off. In another improvement, a dual buffer layer using an n-layer and distributed n+ regions improves breakdown voltage and saturation voltage. In another improvement, p-zones of different concentrations in a termination structure are formed by varying pitches of trenches. In another improvement, beveled saw streets increase breakdown voltage.
    Type: Application
    Filed: May 16, 2017
    Publication date: August 31, 2017
    Inventor: Hamza Yilmaz