Patents by Inventor Han-Wen Chen
Han-Wen Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12087679Abstract: The present disclosure relates to semiconductor core assemblies and methods of forming the same. The semiconductor core assemblies described herein may be utilized to form semiconductor package assemblies, PCB assemblies, PCB spacer assemblies, chip carrier assemblies, intermediate carrier assemblies (e.g., for graphics cards), and the like. In one embodiment, a silicon substrate core is structured by direct laser patterning. One or more conductive interconnections are formed in the substrate core and one or more redistribution layers are formed on surfaces thereof. The silicon substrate core may thereafter be utilized as a core structure for a semiconductor package, PCB, PCB spacer, chip carrier, intermediate carrier, or the like.Type: GrantFiled: May 28, 2020Date of Patent: September 10, 2024Inventors: Han-Wen Chen, Steven Verhaverbeke, Giback Park, Kyuil Cho, Kurtis Leschkies, Roman Gouk, Chintan Buch, Vincent Dicaprio, Bernhard Stonas, Jean Delmas
-
Publication number: 20240222142Abstract: Semiconductor packages and methods for metallization of non-conducting surfaces for fabricating semiconductor packages are provided. In an embodiment, the method includes depositing an adhesion layer on a polymeric surface by an electroless deposition process. The polymeric surface defines a sidewall of a through-hole via and the adhesion layer comprises a cobalt alloy or a nickel alloy. The method further includes depositing a copper seed layer on the adhesion layer by an immersion plating process. The copper seed layer displaces a portion of the adhesion layer. The method further includes filling the through-hole via with a copper containing layer.Type: ApplicationFiled: December 28, 2022Publication date: July 4, 2024Inventors: Tapash CHAKRABORTY, Steven VERHAVERBEKE, Han-Wen CHEN, Kyuil CHO, Kent ZHAO, Gopi Chandran RAMACHANDRAN
-
Publication number: 20240123551Abstract: An apparatus for hole drilling in a substrate is provided. The apparatus includes a laser system configured to apply a laser beam onto the substrate for removing material from a set of areas on the substrate by directing the laser beam onto predefined positions corresponding to the set of areas on the substrate in a sequence. The apparatus includes a ventilation system configured to produce a fluid flow along one or more sides of the substrate. The apparatus controls the laser beam such that the laser beam is sequentially positioned according to a first laser beam movement direction and a second laser beam movement direction.Type: ApplicationFiled: March 10, 2021Publication date: April 18, 2024Inventors: Jeffrey L. FRANKLIN, Valentina FURIN, Giorgio CELLERE, Steven VERHAVERBEKE, Kurtis LESCHKIES, Han-Wen CHEN, Park GIBACK
-
Patent number: 11931855Abstract: Embodiments of the present disclosure generally relate to planarization of surfaces on substrates and on layers formed on substrates. More specifically, embodiments of the present disclosure relate to planarization of surfaces on substrates for advanced packaging applications, such as surfaces of polymeric material layers. In one implementation, the method includes mechanically grinding a substrate surface against a polishing surface in the presence of a grinding slurry during a first polishing process to remove a portion of a material formed on the substrate; and then chemically mechanically polishing the substrate surface against the polishing surface in the presence of a polishing slurry during a second polishing process to reduce any roughness or unevenness caused by the first polishing process.Type: GrantFiled: May 28, 2020Date of Patent: March 19, 2024Assignee: Applied Materials, Inc.Inventors: Han-Wen Chen, Steven Verhaverbeke, Tapash Chakraborty, Prayudi Lianto, Prerna Sonthalia Goradia, Giback Park, Chintan Buch, Pin Gian Gan, Alex Hung
-
Patent number: 11887934Abstract: The present disclosure relates to methods and apparatus for forming a thin-form-factor semiconductor package. In one embodiment, a glass or silicon substrate is structured by micro-blasting or laser ablation to form structures for formation of interconnections therethrough. The substrate is thereafter utilized as a frame for forming a semiconductor package with embedded dies therein.Type: GrantFiled: December 5, 2022Date of Patent: January 30, 2024Assignee: Applied Materials, Inc.Inventors: Han-Wen Chen, Steven Verhaverbeke, Giback Park, Giorgio Cellere, Diego Tonini, Vincent DiCaprio, Kyuil Cho
-
Patent number: 11881447Abstract: The present disclosure relates to semiconductor core assemblies and methods of forming the same. The semiconductor core assemblies described herein may be utilized to form semiconductor package assemblies, PCB assemblies, PCB spacer assemblies, chip carrier assemblies, intermediate carrier assemblies (e.g., for graphics cards), and the like. In one embodiment, a silicon substrate core is structured by direct laser patterning. One or more conductive interconnections are formed in the substrate core and one or more redistribution layers are formed on surfaces thereof. The silicon substrate core may thereafter be utilized as a core structure for a semiconductor package, PCB, PCB spacer, chip carrier, intermediate carrier, or the like.Type: GrantFiled: April 12, 2021Date of Patent: January 23, 2024Assignee: Applied Materials, Inc.Inventors: Han-Wen Chen, Steven Verhaverbeke, Giback Park, Kyuil Cho, Kurtis Leschkies, Roman Gouk, Chintan Buch, Vincent Dicaprio, Bernhard Stonas, Jean Delmas
-
Publication number: 20240021533Abstract: The present disclosure relates to thin-form-factor reconstituted substrates and methods for forming the same. The reconstituted substrates described herein may be utilized to fabricate homogeneous or heterogeneous high-density 3D integrated devices. In one embodiment, a silicon substrate is structured by direct laser patterning to include one or more cavities and one or more vias. One or more semiconductor dies of the same or different types may be placed within the cavities and thereafter embedded in the substrate upon formation of an insulating layer thereon. One or more conductive interconnections are formed in the vias and may have contact points redistributed to desired surfaces of the reconstituted substrate. The reconstituted substrate may thereafter be integrated into a stacked 3D device.Type: ApplicationFiled: July 31, 2023Publication date: January 18, 2024Inventors: Han-Wen CHEN, Steven VERHAVERBEKE, Guan Huei SEE, Giback PARK, Giorgio CELLERE, Diego TONINI, Vincent DICAPRIO, Kyuil CHO
-
Publication number: 20240021582Abstract: The present disclosure generally relates to stacked miniaturized electronic devices and methods of forming the same. More specifically, embodiments described herein relate to semiconductor device spacers and methods of forming the same. The semiconductor device spacers described herein may be utilized to form stacked semiconductor package assemblies, stacked PCB assemblies, and the like.Type: ApplicationFiled: July 27, 2023Publication date: January 18, 2024Inventors: Kurtis LESCHKIES, Han-Wen CHEN, Steven VERHAVERBEKE, Giback PARK, Kyuil CHO, Jeffrey L. FRANKLIN, Wei-Sheng LEI
-
Patent number: 11862546Abstract: The present disclosure relates to semiconductor core assemblies and methods of forming the same. The semiconductor core assemblies described herein may be utilized to form semiconductor package assemblies, PCB assemblies, PCB spacer assemblies, chip carrier assemblies, intermediate carrier assemblies (e.g., for graphics cards), and the like. In one embodiment, a silicon substrate core is structured by direct laser patterning. One or more conductive interconnections are formed in the substrate core and one or more redistribution layers are formed on surfaces thereof. The silicon substrate core may thereafter be utilized as a core structure for a semiconductor package, PCB, PCB spacer, chip carrier, intermediate carrier, or the like.Type: GrantFiled: November 27, 2019Date of Patent: January 2, 2024Assignee: Applied Materials, Inc.Inventors: Han-Wen Chen, Steven Verhaverbeke, Giback Park, Kyuil Cho, Kurtis Leschkies, Roman Gouk, Chintan Buch, Vincent Dicaprio
-
Patent number: 11837680Abstract: The present disclosure relates to methods and apparatus for structuring a semiconductor substrate. In one embodiment, a method of substrate structuring includes applying a resist layer to a substrate optionally disposed on a carrier. The resist layer is patterned using ultraviolet radiation or laser ablation. The patterned portions of the resist layer are then transferred onto the substrate by micro-blasting to form desired features in the substrate while unexposed or un-ablated portions of the resist layer shield the rest of the substrate. The substrate is then exposed to an etch process and a de-bonding process to remove the resist layer and release the carrier.Type: GrantFiled: May 18, 2022Date of Patent: December 5, 2023Assignee: Applied Materials, Inc.Inventors: Han-Wen Chen, Steven Verhaverbeke, Giback Park
-
Patent number: 11798831Abstract: A method for printing on a substrate includes printing a support structure by printing a liquid precursor material and curing the liquid precursor material, positioning a substrate within the support structure, printing one or more anchors on the substrate and the support structure by printing and curing the liquid precursor material to secure the substrate to the support structure, and printing one or more device structures on the substrate while anchored by printing and curing the liquid precursor material.Type: GrantFiled: May 2, 2022Date of Patent: October 24, 2023Assignee: Applied Materials, Inc.Inventors: Daihua Zhang, Hou T. Ng, Nag B. Patibandla, Sivapackia Ganapathiappan, Yingdong Luo, Kyuil Cho, Han-Wen Chen
-
Publication number: 20230282498Abstract: The present disclosure relates to systems and methods for fabricating semiconductor packages, and more particularly, for forming features in semiconductor packages by laser ablation. In one embodiment, the laser systems and methods described herein can be utilized to pattern a substrate to be utilized as a package frame for a semiconductor package having one or more interconnections formed therethrough and/or one or more semiconductor dies disposed therein. The laser systems described herein can produce tunable laser beams for forming features in a substrate or other package structure. Specifically, frequency, pulse width, pulse shape, and pulse energy of laser beams are tunable based on desired sizes of patterned features and on the material in which the patterned features are formed. The adjustability of the laser beams enables rapid and accurate formation of features in semiconductor substrates and packages with controlled depth and topography.Type: ApplicationFiled: May 9, 2023Publication date: September 7, 2023Inventors: Kurtis LESCHKIES, Jeffrey L. FRANKLIN, Wei-Sheng LEI, Steven VERHAVERBEKE, Jean DELMAS, Han-Wen CHEN, Giback PARK
-
Patent number: 11742330Abstract: The present disclosure generally relates to stacked miniaturized electronic devices and methods of forming the same. More specifically, embodiments described herein relate to semiconductor device spacers and methods of forming the same. The semiconductor device spacers described herein may be utilized to form stacked semiconductor package assemblies, stacked PCB assemblies, and the like.Type: GrantFiled: January 18, 2022Date of Patent: August 29, 2023Assignee: Applied Materials, Inc.Inventors: Kurtis Leschkies, Han-Wen Chen, Steven Verhaverbeke, Giback Park, Kyuil Cho, Jeffrey L. Franklin, Wei-Sheng Lei
-
Patent number: 11715700Abstract: The present disclosure relates to thin-form-factor reconstituted substrates and methods for forming the same. The reconstituted substrates described herein may be utilized to fabricate homogeneous or heterogeneous high-density 3D integrated devices. In one embodiment, a silicon substrate is structured by direct laser patterning to include one or more cavities and one or more vias. One or more semiconductor dies of the same or different types may be placed within the cavities and thereafter embedded in the substrate upon formation of an insulating layer thereon. One or more conductive interconnections are formed in the vias and may have contact points redistributed to desired surfaces of the reconstituted substrate. The reconstituted substrate may thereafter be integrated into a stacked 3D device.Type: GrantFiled: April 12, 2021Date of Patent: August 1, 2023Assignee: Applied Materials, Inc.Inventors: Han-Wen Chen, Steven Verhaverbeke, Guan Huei See, Giback Park, Giorgio Cellere, Diego Tonini, Vincent Dicaprio, Kyuil Cho
-
Patent number: 11705365Abstract: The present disclosure relates to micro-via structures for interconnects in advanced wafer level semiconductor packaging. The methods described herein enable the formation of high-quality, low-aspect-ratio micro-via structures with improved uniformity, thus facilitating thin and small-form-factor semiconductor devices having high I/O density with improved bandwidth and power.Type: GrantFiled: May 18, 2021Date of Patent: July 18, 2023Assignee: Applied Materials, Inc.Inventors: Wei-Sheng Lei, Kurtis Leschkies, Roman Gouk, Giback Park, Kyuil Cho, Tapash Chakraborty, Han-Wen Chen, Steven Verhaverbeke
-
Publication number: 20230187370Abstract: The present disclosure relates to methods and apparatus for forming a thin-form-factor semiconductor package. In one embodiment, a glass or silicon substrate is structured by micro-blasting or laser ablation to form structures for formation of interconnections therethrough. The substrate is thereafter utilized as a frame for forming a semiconductor package with embedded dies therein.Type: ApplicationFiled: December 5, 2022Publication date: June 15, 2023Inventors: Han-Wen CHEN, Steven VERHAVERBEKE, Giback PARK, Giorgio CELLERE, Diego TONINI, Vincent DICAPRIO, Kyuil CHO
-
Patent number: 11676832Abstract: The present disclosure relates to systems and methods for fabricating semiconductor packages, and more particularly, for forming features in semiconductor packages by laser ablation. In one embodiment, the laser systems and methods described herein can be utilized to pattern a substrate to be utilized as a package frame for a semiconductor package having one or more interconnections formed therethrough and/or one or more semiconductor dies disposed therein. The laser systems described herein can produce tunable laser beams for forming features in a substrate or other package structure. Specifically, frequency, pulse width, pulse shape, and pulse energy of laser beams are tunable based on desired sizes of patterned features and on the material in which the patterned features are formed. The adjustability of the laser beams enables rapid and accurate formation of features in semiconductor substrates and packages with controlled depth and topography.Type: GrantFiled: July 24, 2020Date of Patent: June 13, 2023Assignee: Applied Materials, Inc.Inventors: Kurtis Leschkies, Jeffrey L. Franklin, Wei-Sheng Lei, Steven Verhaverbeke, Jean Delmas, Han-Wen Chen, Giback Park
-
Publication number: 20230148220Abstract: The present disclosure relates to methods and apparatus for forming a thin-form-factor semiconductor device package. In certain embodiments, a glass or silicon substrate is patterned by laser ablation to form structures for subsequent formation of interconnections therethrough. The substrate is thereafter utilized as a frame for forming a semiconductor device package, which may have one or more embedded double-sided dies therein. In certain embodiments, an insulating layer is formed over the substrate by laminating a pre-structured insulating film thereon. The insulating film may be pre-structured by laser ablation to form structures therein, followed by selective curing of sidewalls of the formed structures.Type: ApplicationFiled: October 26, 2022Publication date: May 11, 2023Inventors: Steven VERHAVERBEKE, Han-Wen CHEN
-
Publication number: 20230070053Abstract: The present disclosure relates to semiconductor devices and methods of forming the same. More particularly, the present disclosure relates to semiconductor package devices having a stiffener framed formed thereon. The incorporation of the stiffener frame improves the structural integrity of the semiconductor package devices to mitigate warpage and/or collapse while simultaneously enabling utilization of thinner core substrates for improved signal integrity and power delivery between packaged devices.Type: ApplicationFiled: August 11, 2022Publication date: March 9, 2023Inventors: Han-Wen CHEN, Steven VERHAVERBEKE, Giback PARK
-
Patent number: 11521937Abstract: The present disclosure relates to thin-form-factor semiconductor packages with integrated electromagnetic interference (“EMI”) shields and methods for forming the same. The packages described herein may be utilized to form high-density semiconductor devices. In certain embodiments, a silicon substrate is laser ablated to include one or more cavities and a plurality of vias surrounding the cavities. One or more semiconductor dies may be placed within the cavities and thereafter embedded in the substrate upon formation of an insulating layer thereon. A plurality of conductive interconnections are formed within the vias and may have contact points redistributed to desired surfaces of the die-embedded substrate assembly. Thereafter, an EMI shield is plated onto a surface of the die-embedded substrate assembly and connected to ground by at least one of the one or more conductive interconnections. The die-embedded substrate assembly may then be singulated and/or integrated with another semiconductor device.Type: GrantFiled: November 16, 2020Date of Patent: December 6, 2022Assignee: Applied Materials, Inc.Inventors: Steven Verhaverbeke, Han-Wen Chen, Giback Park, Chintan Buch