Patents by Inventor Hans-Juergen Mann

Hans-Juergen Mann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8610877
    Abstract: An imaging optical system has a plurality of mirrors, which via a beam path for imaging light, image an object field in an object plane into an image field in an image plane. The imaging optical system has an exit pupil obscuration. At least one of the mirrors has no opening for passage of the imaging light. The fourth to last mirror in the beam path is concave, resulting in an imaging optical system having improved imaging properties without compromise in throughput.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: December 17, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Hans-Juergen Mann, David Shafer
  • Patent number: 8605255
    Abstract: An imaging optical system has a plurality of mirrors. These image an object field in an object plane into an image field in an image plane. In the imaging optical system, the ratio of a maximum angle of incidence of imaging light) on reflection surfaces of the mirrors and an image-side numerical aperture of the imaging optical system is less than 33.8°. This can result in an imaging optical system which offers good conditions for a reflective coating of the mirror, with which a low reflection loss can be achieved for imaging light when passing through the imaging optical system, in particular even at wavelengths in the EUV range of less than 10 nm.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: December 10, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Hans-Juergen Mann, Wilhelm Ulrich, Stephan Muellender, Hartmut Enkisch
  • Publication number: 20130301023
    Abstract: A reflective optical element and an EUV lithography appliance containing one such element are provided, the appliance displaying a low propensity to contamination. The reflective optical element has a protective layer system includes at least two layers. The optical characteristics of the protective layer system are between those of a spacer and an absorber, or correspond to those of a spacer. The selection of a material with the smallest possible imaginary part and a real part which is as close to 1 as possible in terms of the refractive index leads to a plateau-type reflectivity course according to the thickness of the protective layer system between two thicknesses d1 and d2. The thickness of the protective layer system is selected in such a way that it is less than d2.
    Type: Application
    Filed: July 11, 2013
    Publication date: November 14, 2013
    Inventors: Johann Trenkler, Hans-Juergen Mann, Udo Nothelfer
  • Patent number: 8576376
    Abstract: An imaging optical system includes a plurality of mirrors that image an object field in an object plane into an image field in an image plane. At least one of the mirrors is obscured, and thus has a opening for imaging light to pass through. The fourth-last mirror in the light path before the image field is not obscured and provides, with an outer edge of the optically effective reflection surface thereof, a central shadowing in a pupil plane of the imaging optical system. The distance between the fourth-last mirror and the last mirror along the optical axis is at least 10% of the distance between the object field and the image field. An intermediate image, which is closest to the image plane, is arranged between the last mirror and the image plane. The imaging optical system can have a numerical aperture of 0.9. These measures, not all of which must be effected simultaneously, lead to an imaging optical system with improved imaging properties and/or reduced production costs.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: November 5, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Hans-Juergen Mann
  • Patent number: 8558991
    Abstract: An imaging optical system can image two object fields, each in the same object plane, into two corresponding image fields, each in the same image plane. The two object fields are spatially separated from each another, and the two image fields are spatially separated from each other. The imaging optical system can exhibit increased flexibility of use.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: October 15, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Hans-Juergen Mann
  • Patent number: 8553321
    Abstract: The disclosure generally relates to imaging optical systems that include a plurality of mirrors, which image an object field lying in an object plane in an image field lying in an image plane, where at least one of the mirrors has a through-hole for imaging light to pass through. The disclosure also generally relates to projection exposure installations that include such imaging optical systems, methods of using such projection exposure installations, and components made by such methods.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: October 8, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Hans-Juergen Mann
  • Publication number: 20130250428
    Abstract: A magnifying imaging optical unit (7) has at most four mirrors (M1 to M4), which, via an imaging beam path (8) having imaging partial rays (25, 19, 20) between the mirrors (M1 to M4) that are adjacent in the imaging beam path (8), image an object field (6) in an object plane (11) into an image field (9) in an image plane (12). The optical unit (7) is designed a first imaging partial ray (19) such that between a second mirror (M2) in the imaging beam path (8) and a third mirror (M3) in the imaging beam path (8) and a second imaging partial ray (20) between the third mirror (M3) in the imaging beam path (8) and a fourth mirror (M4) in the imaging beam path (8) respectively pass through at least one passage opening (21) in a mirror body (22) of a first mirror (M1) in the imaging beam path (8). According to a further aspect, the optical unit has a structural length T that is at most 1300 mm, and a ratio T/? of the structural length T and an imaging scale ? that is less than 1.5.
    Type: Application
    Filed: May 23, 2013
    Publication date: September 26, 2013
    Inventor: Hans-Juergen Mann
  • Publication number: 20130242278
    Abstract: The invention concerns a projection objective of a microlithographic projection exposure apparatus designed for EUV, for imaging an object plane illuminated in operation of the projection exposure apparatus into an image plane, wherein the projection objective has at least one mirror segment arrangement (160, 260, 280, 310, 410, 500) comprising a plurality of separate mirror segments (161-163; 261-266, 281-284; 311, 312; 411, 412; 510-540); and wherein associated with the mirror segments of the same mirror segment arrangement are partial beam paths which are different from each other and which respectively provide for imaging of the object plane (OP) into the image plane (IP), wherein said partial beam paths are superposed in the image plane (IP) and wherein at least two partial beams which are superposed in the same point in the image plane (IP) were reflected by different mirror segments of the same mirror segment arrangement.
    Type: Application
    Filed: April 8, 2013
    Publication date: September 19, 2013
    Applicant: Carl Zeiss SMT GmbH
    Inventors: Hartmut Enkisch, Stephan Muellender, Hans-Juergen Mann, Rolf Freimann
  • Patent number: 8537460
    Abstract: A reflective optical element and an EUV lithography appliance containing one such element are provided, the appliance displaying a low propensity to contamination. The reflective optical element has a protective layer system includes at least two layers. The optical characteristics of the protective layer system are between those of a spacer and an absorber, or correspond to those of a spacer. The selection of a material with the smallest possible imaginary part and a real part which is as close to 1 as possible in terms of the refractive index leads to a plateau-type reflectivity course according to the thickness of the protective layer system between two thicknesses d1 and d2. The thickness of the protective layer system is selected in such a way that it is less than d2.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: September 17, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Johann Trenkler, Hans-Jürgen Mann, Udo Nothelfer
  • Patent number: 8436985
    Abstract: The disclosure relates to an optical projection arrangement that can be used to image a reticle onto a substrate. The projection arrangement includes reflective elements, by which a ray path is defined. A combination stop is in a pupil of the ray path. The combination stop has a first opening (aperture opening) for use as an aperture stop. The combination stop also has a second opening for allowing passage of a ray bundle of the ray path, such that the combination stop acts as a combined aperture stop and stray light stop. In addition, the disclosure relates to a corresponding combination stop for optical arrangements, as well as related systems, components and methods.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: May 7, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Hans-Juergen Mann, Daniel Kraehmer, Aurelian Dodoc, Toralf Gruner
  • Patent number: 8416490
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective has a first, refractive objective part for imaging the pattern provided in the object plane into a first intermediate image; a second objective part including at least one concave mirror for imaging the first intermediate imaging into a second intermediate image; and a third, refractive objective part for imaging the second intermediate imaging onto the image plane; wherein the projection objective has a maximum lens diameter Dmax, a maximum image field height Y?, and an image side numerical aperture NA; wherein COMP1=Dmax/(Y?·NA2) and wherein the condition COMP1<10 holds.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: April 9, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf Von Buenau, Hans-Juergen Mann, Alexander Epple, Susanne Beder, Wolfgang Singer
  • Publication number: 20130063716
    Abstract: A metrology system serves to examine an object arranged in an object field using EUV illumination light. An illumination optics of the metrology system has a collector mirror which is arranged in the beam path directly downstream of an EUV light source. Downstream of the collector mirror, less than three additional illumination mirrors are arranged in the beam path between the collector mirror and the object field. An intermediate focus is arranged in the beam path between the collector mirror and the additional illumination mirror. The metrology system further includes a magnifying imaging optics for imaging the object field into an image field in an image plane. As a result a metrology system is obtained which comprises an illumination optics that ensures an efficient illumination of the object field by means of illumination parameters which are well adapted to the illumination situation of current EUV projection exposure apparatuses.
    Type: Application
    Filed: April 12, 2011
    Publication date: March 14, 2013
    Inventors: Hans-Jürgen Mann, Alois Herkommer
  • Publication number: 20130050671
    Abstract: An imaging optics has a plurality of mirrors to image an object field in an object plane into an image field in an image plane. The imaging optics includes a first partial objective to image the object field onto an intermediate image, and the imaging optics includes a second partial objective to image the intermediate image onto the image field. The second partial objective includes a penultimate mirror in the beam path of imaging light between the object field and the image field, and the second partial objective includes a last mirror in the beam path. The penultimate mirror images the intermediate image onto a further intermediate image, and the last mirror images the further intermediate image onto the image field.
    Type: Application
    Filed: September 4, 2012
    Publication date: February 28, 2013
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Hans-Juergen Mann, David Shafer
  • Patent number: 8363315
    Abstract: A catadioptric projection objective for imaging an off-axis object field arranged in an object surface of the projection objective onto an off-axis image field arranged in an image surface of the projection objective has a front lens group, a mirror group comprising four mirrors and having an object side mirror group entry, an image side mirror group exit, and a mirror group plane aligned transversely to the optical axis and arranged geometrically between the mirror group entry and the mirror group exit; and a rear lens group. The mirrors of the mirror group are arranged such that at least one intermediate image is positioned inside the mirror group between mirror group entry and mirror group exit, and that radiation coming from the mirror group entry passes at least four times through the mirror group plane and is reflected at least twice on a concave mirror surface of the mirror group prior to exiting the mirror group at the mirror group exit.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: January 29, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Alexander Epple, Wilhelm Ulrich, Aurelian Dodoc, Hans-Juergen Mann, David Shafer
  • Patent number: 8355201
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective has a first, refractive objective part for imaging the pattern provided in the object plane into a first intermediate image; a second objective part including at least one concave mirror for imaging the first intermediate imaging into a second intermediate image; and a third, refractive objective part for imaging the second intermediate imaging onto the image plane; wherein the projection objective has a maximum lens diameter Dmax, a maximum image field height Y?, and an image side numerical aperture NA; wherein COMP1=Dmax/(Y?·NA2) and wherein the condition COMP1<10 holds.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: January 15, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf M. Von Buenau, Hans-Juergen Mann, Alexander Epple, Susanne Beder, Wolfgang Singer
  • Publication number: 20130010352
    Abstract: An optical system is disclosed that includes a plurality of elements arranged to image radiation at a wavelength ? from an object field in an object surface to an image field in an image surface. The elements include mirror elements have a reflective surface formed by a reflective coating positioned at a path of radiation. At least one of the mirror elements has a rotationally asymmetrical reflective surface deviating from a best-fit rotationally symmetric reflective surface by about ? or more at one or more locations. The elements include an apodization correction element effective to correct a spatial intensity distribution in an exit pupil of the optical system relative to the optical system without the apodization correcting element. The apodization correction element can be effective to increase symmetry of the spatial intensity distribution in the exit pupil relative to the optical system without the apodization correcting element.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 10, 2013
    Applicant: Carl Zeiss SMT GmbH
    Inventors: Danny Chan, Hans-Juergen Mann, Sascha Migura
  • Patent number: 8345267
    Abstract: An apparatus (10) for microlithographic projection exposure, which includes: an optical system (18) for imaging mask structures (16) onto a surface (21) of a substrate (20) by projecting the mask structures (16) with imaging radiation (13), the optical system (18) being configured to operate in the EUV and/or higher frequency wavelength range, and various structure defining a measurement beam path (36) for guiding measurement radiation (34), the measurement beam path (36) extending within the optical system (18) such that the measurement radiation (34) only partially passes through the optical system (18) during operation of the apparatus (10).
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: January 1, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Hans-Juergen Mann, Wolfgang Singer
  • Patent number: 8339701
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective comprises: a first objective part for imaging the pattern provided in the object plane into a first intermediate image; a second objective part for imaging the first intermediate imaging into a second intermediate image; a third objective part for imaging the second intermediate imaging directly onto the image plane; wherein a first concave mirror having a first continuous mirror surface and at least one second concave mirror having a second continuous mirror surface are arranged upstream of the second intermediate image; pupil surfaces are formed between the object plane and the first intermediate image, between the first and the second intermediate image and between the second intermediate image and the image plane; and all concave mirrors are arranged optically remote from a pupil surface.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: December 25, 2012
    Assignee: Carl Zeiss SMT GmbH
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf Von Buenau, Hans-Juergen Mann, Alexander Epple
  • Patent number: 8317345
    Abstract: In general, in one aspect, the invention features an objective arranged to image radiation from an object plane to an image plane, including a plurality of elements arranged to direct the radiation from the object plane to the image plane, wherein the objective has an image side numerical aperture of more than 0.55 and a maximum image side field dimension of more than 1 mm, and the objective is a catoptric objective.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: November 27, 2012
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Hans-Juergen Mann, David Shafer, Wilhelm Ulrich
  • Publication number: 20120293779
    Abstract: A reflective optical element and an EUV lithography appliance containing one such element are provided, the appliance displaying a low propensity to contamination. The reflective optical element has a protective layer system includes at least two layers. The optical characteristics of the protective layer system are between those of a spacer and an absorber, or correspond to those of a spacer. The selection of a material with the smallest possible imaginary part and a real part which is as close to 1 as possible in terms of the refractive index leads to a plateau-type reflectivity course according to the thickness of the protective layer system between two thicknesses d1 and d2. The thickness of the protective layer system is selected in such a way that it is less than d2.
    Type: Application
    Filed: June 22, 2012
    Publication date: November 22, 2012
    Inventors: Johann Trenkler, Hans-Juergen Mann, Udo Nothelfer