Patents by Inventor Hans Weber

Hans Weber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200091058
    Abstract: A connection body which comprises a base structure at least predominantly made of a semiconductor oxide material or glass material, and an electrically conductive wiring structure on and/or in the base structure, wherein the electrically conductive wiring structure comprises at least one vertical wiring section with a first lateral dimension on and/or in the base structure and at least one lateral wiring section connected with the at least one vertical wiring section, wherein the at least one lateral wiring section has a second lateral dimension on and/or in the base structure, which is different to the first lateral dimension.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 19, 2020
    Inventors: Andreas Riegler, Christian Fachmann, Matteo-Alessandro Kutschak, Carsten von Koblinski, Hans Weber
  • Patent number: 10553681
    Abstract: A method includes forming first regions of a first doping type and second regions of a second doping type in first and second semiconductor layers such that the first and second regions are arranged alternately in at least one horizontal direction of the first and second semiconductor layers, and forming a control structure with transistor cells each including at least one body region, at least one source region and at least one gate electrode in the second semiconductor layer. Forming the first and second regions includes: forming trenches in the first semiconductor layer and implanting at least one of first and second type dopant atoms into sidewalls of the trenches; forming the second semiconductor layer on the first semiconductor layer such that the second layer fills the trenches; implanting at least one of first and second type dopant atoms into the second semiconductor layer; and at least one temperature process.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: February 4, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans Weber, Franz Hirler, Maximilian Treiber, Daniel Tutuc, Andreas Voerckel
  • Patent number: 10541301
    Abstract: A method of producing a semiconductor device includes providing a semiconductor body including a semiconductor body material having a dopant diffusion coefficient that is smaller than the corresponding dopant diffusion coefficient of silicon. At least one first semiconductor region doped with dopants of a first conductivity type is produced in the semiconductor body, including by applying a first implantation of first implantation ions. At least one second semiconductor region adjacent to the at least one first semiconductor region and doped with dopants of a second conductivity type complementary to the first conductivity type is produced in the semiconductor body, including by applying a second implantation of second implantation ions.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: January 21, 2020
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Wolfgang Jantscher, Roland Rupp, Werner Schustereder, Hans Weber
  • Publication number: 20190387999
    Abstract: In a method and apparatus for determining an examination duration tolerable by a patient in and/or on a diagnostic examination device, the patient to be examined is observed at least in a preliminary stage of the examination concerned, during which measurement parameters are ascertained. From the measurement parameters, an algorithm determines a statement about the dwell capability of the patient in the examination device. The algorithm can be an artificial neural network.
    Type: Application
    Filed: June 21, 2019
    Publication date: December 26, 2019
    Applicant: Siemens Healthcare GmbH
    Inventors: David Grodzki, Hans Weber
  • Publication number: 20190374168
    Abstract: In a method and medical imaging apparatus for determining a feature characterizing intentional breath-holding by an examination object for acquiring medical raw data with breath-holding algorithm, an algorithm, the algorithm being designed to allocate at least one feature characterizing intentional breath-holding to at least one physiological property. The algorithm includes or accesses trained artificial neural network. A physiological property of the examination object is detected during free breathing of the examination object. The feature characterizing intentional breath-holding by the examination object is determined by the computer, by executing the algorithm with the detected physiological property of the examination object, as an input to the algorithm.
    Type: Application
    Filed: June 12, 2019
    Publication date: December 12, 2019
    Applicant: Siemens Healthcare GmbH
    Inventors: David Grodzki, Hans Weber
  • Publication number: 20190319124
    Abstract: A transistor device comprises at least one gate electrode, a gate runner connected to the at least one gate electrode and arranged on top of a semiconductor body, a plurality of gate pads arranged on top of the semiconductor body, and a plurality of resistor arrangements. Each gate pad is electrically connected to the gate runner via a respective one of the plurality of resistor arrangements, and each of the resistor arrangements has an electrical resistance, wherein the resistances of the plurality of resistor arrangements are different.
    Type: Application
    Filed: April 10, 2019
    Publication date: October 17, 2019
    Inventors: Andreas Riegler, Christian Fachmann, Bjoern Fischer, Franz Hirler, Gabor Mezoesi, Hans Weber
  • Publication number: 20190288061
    Abstract: A method for forming a transistor device includes: implanting dopant atoms of a first doping type and dopant atoms of a second doping type into opposite sidewalls of each of a plurality of trenches of a first semiconductor layer having a basic doping of the first doping type, the dopant atoms of the first doping type having a smaller diffusion coefficient than the dopant atoms of the second doping type; filling each trench with a second semiconductor layer of the first doping type; and diffusing the dopant atoms of the first doping type and the dopant atoms of the second doping type such that a plurality of first regions of the first doping type and a plurality of second regions of the second doping type are formed. The second regions are spaced apart from each other. Each first region is at least partially arranged within a respective second region.
    Type: Application
    Filed: March 15, 2019
    Publication date: September 19, 2019
    Inventor: Hans Weber
  • Patent number: 10411126
    Abstract: A semiconductor device includes an electrically conductive lead frame which includes a die pad and a plurality of electrically conductive leads, each of the leads in the plurality being spaced apart from the die pad. The semiconductor device further includes first and second integrated switching devices mounted on the die pad, each of the first and second integrated switching devices include electrically conductive gate, source and drain terminals. The source terminal of the first integrated switching device is disposed on a rear surface of the first integrated switching device that faces and electrically connects with the die pad. The drain terminal of the second integrated switching device is disposed on a rear surface of the second integrated switching device that faces and electrically connects with the die pad.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: September 10, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Andreas Riegler, Christian Fachmann, Gabor Mezoesi, Hans Weber
  • Publication number: 20190252492
    Abstract: A semiconductor device of an embodiment includes transistor cells in a transistor cell area of a semiconductor body. A super junction structure in the semiconductor body includes a plurality of drift sub-regions and compensation sub-regions of opposite first and second conductivity types, respectively, and alternately arranged along a lateral direction. A termination area outside the transistor cell area between an edge of the semiconductor body and the transistor cell area includes first and third termination sub-regions of the first conductivity type, respectively. A second termination sub-region of the second conductivity type is sandwiched between the first and the third termination sub-regions along a vertical direction perpendicular to a first surface of the semiconductor body.
    Type: Application
    Filed: April 25, 2019
    Publication date: August 15, 2019
    Inventors: Franz Hirler, Hans Weber
  • Patent number: 10369385
    Abstract: A method for providing at least one measurement by a magnetic resonance imaging (MRI) system of a tissue property or underlying tissue property in a region sufficiently close to a metal object, so that the metal object induces artifacts is provided. At least one magnetic resonance imaging signal from the region is acquired through the MRI system. The acquired at least one MRI signal is processed to correct for artifacts induced by the metal object. At least one tissue property or underlying tissue property measurement is extracted from the processed at least one MRI signal.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: August 6, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hans Weber, Daehyun Yoon, Valentina Taviani, Brian A. Hargreaves
  • Patent number: 10374032
    Abstract: A semiconductor device includes a semiconductor body having first and second opposite sides, a drift region, a body layer at the second side, and a field-stop region in Ohmic connection with the body layer. A source metallization at the second side is in Ohmic connection with the body layer. A drain metallization at the first side is in Ohmic connection with the drift region. A gate electrode at the second side is electrically insulated from the semiconductor body to define an operable switchable channel region in the body layer. A through contact structure extends at least between the first and second sides, and includes a conductive region in Ohmic connection with the gate electrode and a dielectric layer. In a normal projection onto a horizontal plane substantially parallel to the first side, the field-stop region surrounds at least one of the drift region and the gate electrode.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: August 6, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans Weber, Christian Fachmann, Gabor Mezoesi, Andreas Riegler
  • Publication number: 20190181094
    Abstract: An alignment mark in a process surface of a semiconductor layer includes a groove with a minimum width of at least 100 ?m and a vertical extension in a range 100 nm to 1 ?m. The alignment mark further includes at least one fin within the groove at a distance of at least 60 ?m to a closest one of inner corners of the groove.
    Type: Application
    Filed: February 13, 2019
    Publication date: June 13, 2019
    Inventors: Andreas Moser, Hans Weber, Johannes Baumgartl, Gabor Mezoesi, Michael Treu
  • Patent number: 10319810
    Abstract: A semiconductor device of an embodiment includes transistor cells in a transistor cell area of a semiconductor body. A super junction structure in the semiconductor body includes a plurality of drift sub-regions and compensation sub-regions of opposite first and second conductivity types, respectively, and alternately arranged along a lateral direction. A termination area outside the transistor cell area between an edge of the semiconductor body and the transistor cell area includes first and third termination sub-regions of the first conductivity type, respectively. A second termination sub-region of the second conductivity type is sandwiched between the first and the third termination sub-regions along a vertical direction perpendicular to a first surface of the semiconductor body.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: June 11, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Hans Weber
  • Patent number: 10269896
    Abstract: A method of manufacturing semiconductor devices in a semiconductor wafer comprises forming charge compensation device structures in the semiconductor wafer. An electric characteristic related to the charge compensation device structures is measured. At least one of proton irradiation and annealing parameters are adjusted based on the measured electric characteristic. The semiconductor wafer is irradiated with protons and annealed based on the at least one of the adjusted proton irradiation and annealing parameters. Laser beam irradiation parameters are adjusted with respect to different positions on the semiconductor wafer based on the measured electric characteristic. The semiconductor wafer is irradiated with a photon beam at the different positions on the wafer based on the photon beam irradiation parameters.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: April 23, 2019
    Assignee: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Hans Weber, Wolfgang Jantscher, Hans-Joachim Schulze
  • Patent number: 10236258
    Abstract: An alignment mark in a process surface of a semiconductor layer includes a groove with a minimum width of at least 100 ?m and a vertical extension in a range 100 nm to 1 ?m. The alignment mark further includes at least one fin within the groove at a distance of at least 60 ?m to a closest one of inner corners of the groove.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: March 19, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Andreas Moser, Hans Weber, Michael Treu, Johannes Baumgartl, Gabor Mezoesi
  • Patent number: 10224394
    Abstract: According to an embodiment of a semiconductor substrate, the semiconductor substrate includes a superjunction structure in a device region of a semiconductor layer and an alignment mark in a kerf region of the semiconductor layer. The superjunction structure includes first regions and second regions of opposite conductivity types, the first and the second regions alternating along at least one horizontal direction. The alignment mark includes a vertical step formed by an alignment structure projecting or recessed from a main surface of the semiconductor layer. The alignment structure is of a material of the first regions of the superjunction structure.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: March 5, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans Weber, Christian Fachmann, Daniel Tutuc, Andreas Voerckel
  • Publication number: 20190058038
    Abstract: A method includes forming first regions of a first doping type and second regions of a second doping type in first and second semiconductor layers such that the first and second regions are arranged alternately in at least one horizontal direction of the first and second semiconductor layers, and forming a control structure with transistor cells each including at least one body region, at least one source region and at least one gate electrode in the second semiconductor layer. Forming the first and second regions includes: forming trenches in the first semiconductor layer and implanting at least one of first and second type dopant atoms into sidewalls of the trenches; forming the second semiconductor layer on the first semiconductor layer such that the second layer fills the trenches; implanting at least one of first and second type dopant atoms into the second semiconductor layer; and at least one temperature process.
    Type: Application
    Filed: August 17, 2018
    Publication date: February 21, 2019
    Inventors: Hans Weber, Franz Hirler, Maximilian Treiber, Daniel Tutuc, Andreas Voerckel
  • Patent number: 10211300
    Abstract: According to an embodiment of a method of forming a semiconductor device, a semiconductor layer including a first dopant species of a first conductivity type and a second dopant species of a second conductivity type different from the first conductivity type is formed. The semiconductor layer is part of a semiconductor body having opposite first and second surfaces. Trenches are formed in the semiconductor layer at the first surface. The trenches are filled with a filling material including at least a semiconductor material. A thermal oxide is formed at one or both of the first and second surfaces, the thermal oxide having a thickness of at least 200 nm. Thermal processing of the semiconductor body causes diffusion of the first and second dopants species into the filling material.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: February 19, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Gabor Mezoesi, Hans Weber
  • Publication number: 20190051529
    Abstract: Disclosed is a method that includes forming a plurality of semiconductor arrangements one above the other. In this method, forming each of the plurality of semiconductor arrangements includes: forming a semiconductor layer; forming a plurality of trenches in a first surface of the semiconductor layer; and implanting dopant atoms of at least one of a first type and a second type into at least one of a first sidewall and a second sidewall of each of the plurality of trenches of the semiconductor layer.
    Type: Application
    Filed: October 12, 2018
    Publication date: February 14, 2019
    Inventors: Anton Mauder, Hans Weber, Franz Hirler, Johannes Georg Laven, Hans-Joachim Schulze, Werner Schustereder, Maximilian Treiber, Daniel Tutuc, Andreas Voerckel
  • Publication number: 20190051742
    Abstract: A semiconductor device includes an electrically conductive lead frame which includes a die pad and a plurality of electrically conductive leads, each of the leads in the plurality being spaced apart from the die pad. The semiconductor device further includes first and second integrated switching devices mounted on the die pad, each of the first and second integrated switching devices include electrically conductive gate, source and drain terminals. The source terminal of the first integrated switching device is disposed on a rear surface of the first integrated switching device that faces and electrically connects with the die pad. The drain terminal of the second integrated switching device is disposed on a rear surface of the second integrated switching device that faces and electrically connects with the die pad.
    Type: Application
    Filed: October 5, 2018
    Publication date: February 14, 2019
    Inventors: Andreas Riegler, Christian Fachmann, Gabor Mezoesi, Hans Weber