Patents by Inventor Harish Rajagopalan

Harish Rajagopalan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10608344
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas and transceiver circuitry such as centimeter and millimeter wave transceiver circuitry (e.g., circuitry that transmits and receives antennas signals at frequencies greater than 10 GHz). The antennas may be arranged in a phased antenna array. The phased antenna array may be formed on a dielectric substrate and may include one or more indirectly-fed microstrip dipole antennas. Conductive traces forming dipole antenna resonating elements or parasitic resonating elements for the dipole antennas in the phased antenna array may be embedded within or formed on an upper surface of the dielectric substrate. The phased antenna array may include both dipole antennas and patch antennas. Dipole antennas may be interposed between adjacent patch antennas or formed next to patch antennas.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: March 31, 2020
    Assignee: Apple Inc.
    Inventors: Simone Paulotto, Jennifer M. Edwards, Harish Rajagopalan, Bilgehan Avser
  • Publication number: 20200099138
    Abstract: An electronic device may be provided an antenna, a display, and a housing. The display may include a conductive display structure and a cover layer. The housing may include peripheral conductive structures and a conductive rear wall. The peripheral structures may include a ledge separated from the conductive display structure by a gap. The peripheral structures and the rear wall may define opposing edges of a slot element for the antenna. Conductive bridging structures may be coupled between the conductive display structure and the ledge across the gap. The bridging structures may at least partially overlap locations along the length of the slot element where antenna currents around the slot element exhibit a maximum magnitude. The bridging structures may align the phase of current induced on the ledge with the phase of the current induced on the conductive display structure to maximize antenna efficiency through the cover layer.
    Type: Application
    Filed: September 25, 2018
    Publication date: March 26, 2020
    Inventors: David Garrido Lopez, Harish Rajagopalan, Umar Azad, Rodney A. Gomez Angulo
  • Publication number: 20200021025
    Abstract: An electronic device may be provided with wireless circuitry for conveying radio-frequency signals greater than 10 GHz. The wireless circuitry may include a phased antenna array that transmits a steerable signal beam and independent antennas that are separate from the array. The array may be coupled to a first transceiver and the independent antennas may be coupled to a second transceiver. Power amplifier stages may be coupled between the second transceiver and the independent antennas to boost the gain of the independent antennas. If desired, the array and the independent antennas may be coupled to ports of the same transceiver. In this arrangement, each independent antenna may include an antenna feed that is coupled to a respective pair of ports on the transceiver. This may serve to boost the gain of the independent antennas without power amplifier circuitry. The independent antennas may have smaller footprints than the phased antenna array.
    Type: Application
    Filed: July 16, 2018
    Publication date: January 16, 2020
    Inventors: Rodney A. Gomez Angulo, Simone Paulotto, Harish Rajagopalan, Jennifer M. Edwards, Hao Xu
  • Publication number: 20200021019
    Abstract: An electronic device may be provided with antenna structures that convey radio-frequency signals greater than 10 GHz. The antenna structures may include overlapping first and second patches. The first patch may include a hole. A transmission line for the second patch may include a conductive via extending through the hole. The via may be coupled to a first end of a trace. A second end of the trace may be coupled to a feed terminal on the second patch over an additional via. The hole may be located within a central region of the first patch to allow the via to pass through the hole without electromagnetically coupling to the first patch. If desired, adjustable impedance matching circuits may be used to couple selected impedances to the antenna feeds that help ensure that the first and second patch antennas are sufficiently isolated from each other.
    Type: Application
    Filed: July 16, 2018
    Publication date: January 16, 2020
    Inventors: Harish Rajagopalan, Jennifer M. Edwards, Simone Paulotto, Bilgehan Avser, Hao Xu, Rodney A. Gomez Angulo, Travis A. Barbieri, Georgios Atmatzakis, Matthew A. Mow
  • Publication number: 20190379134
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas and transceiver circuitry such as centimeter and millimeter wave transceiver circuitry (e.g., circuitry that transmits and receives antennas signals at frequencies greater than 10 GHz). The antennas may be arranged in a phased antenna array. The phased antenna array may be formed on a dielectric substrate and may include one or more indirectly-fed microstrip dipole antennas. Conductive traces forming dipole antenna resonating elements or parasitic resonating elements for the dipole antennas in the phased antenna array may be embedded within or formed on an upper surface of the dielectric substrate. The phased antenna array may include both dipole antennas and patch antennas. Dipole antennas may be interposed between adjacent patch antennas or formed next to patch antennas.
    Type: Application
    Filed: June 7, 2018
    Publication date: December 12, 2019
    Inventors: Simone Paulotto, Jennifer M. Edwards, Harish Rajagopalan, Bilgehan Avser
  • Patent number: 10496192
    Abstract: A computer stylus may be provided that includes an elongated body with a tip and an opposing end coupled together by a shaft that includes a metal tube. The stylus may include a substrate at the end of the elongated body and conductive traces on the substrate. The traces may form a sensor electrode for a sensor and an antenna resonating element for an antenna in the stylus. The sensor may include an electrode that gathers sensor signals. Control circuitry may wirelessly transmit the sensor signals to external equipment using the antenna. The sensor electrode may be coupled to the metal tube by a filter. The filter may form an open circuit at radio-frequencies and a short circuit at the frequency of the sensor signals. The filter may mitigate deterioration in wireless performance of the antenna associated with the presence of the sensor.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: December 3, 2019
    Assignee: Apple Inc.
    Inventors: Lu Zhang, Mattia Pascolini, Yi Jiang, Harish Rajagopalan
  • Patent number: 10490881
    Abstract: An electronic device may have hybrid antennas that include slot antenna resonating elements formed from slots in a ground plane and planar inverted-F antenna resonating elements. The planar inverted-F antenna resonating elements may each have a planar metal member that overlaps one of the slots. A return path and feed may be coupled in parallel between the planar metal member and the ground plane. Adjustable circuits such as tunable inductors may be used to tune the hybrid antennas. Adjustable circuits may bridge the slots in hybrid antennas and may be included in return paths that are coupled between the planar metal members of the planar inverted-F antenna resonating elements and the ground plane. A slot may be selectively divided to from two slots using switching circuitry.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: November 26, 2019
    Assignee: Apple Inc.
    Inventors: Umar Azad, Harish Rajagopalan, Rodney A. Gomez Angulo, Pietro Romano, Mattia Pascolini
  • Patent number: 10476170
    Abstract: An electronic device may be provided with a sidewall, a display module separated from the sidewall by a gap, a display cover, a conductive bucket mounted to the display cover within the gap, and a phased antenna array mounted to the bucket for conveying millimeter wave signals through the display cover. The sidewall may form part of an antenna for conveying non-millimeter wave signals. The array may include resonating elements on a substrate. The resonating elements may be fed using feed terminals coupled to alternating sides of the resonating elements. Dielectric layers having a dielectric constant lower than that of the display cover may be provided on a surface of the display cover within the bucket. The array may operate with satisfactory efficiency despite the small amount of available space within the device, electromagnetic interference from the sidewall and the display module, and dielectric loading by the display cover.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: November 12, 2019
    Assignee: Apple Inc.
    Inventors: Harish Rajagopalan, Rodney A. Gomez Angulo, Simone Paulotto, Matthew A. Mow, Bilgehan Avser, Hao Xu, Jennifer M. Edwards, Mattia Pascolini
  • Publication number: 20190319367
    Abstract: An electronic device may be provided with a dielectric cover layer, a dielectric substrate, and a phased antenna array on the dielectric substrate for conveying millimeter wave signals through the dielectric cover layer. The array may include conductive traces mounted against the dielectric layer. The conductive traces may form patch elements or parasitic elements for the phased antenna array. The dielectric layer may have a dielectric constant and a thickness selected to form a quarter wave impedance transformer for the array at a wavelength of operation of the array. The substrate may include fences of conductive vias that laterally surround each of the antennas within the array. When configured in this way, signal attenuation, destructive interference, and surface wave generation associated with the presence of the dielectric layer over the phased antenna array may be minimized.
    Type: Application
    Filed: April 11, 2018
    Publication date: October 17, 2019
    Inventors: Jennifer M. Edwards, Harish Rajagopalan, Simone Paulotto, Bilgehan Avser, Hao Xu, Rodney A. Gomez Angulo, Siwen Yong, Matthew A. Mow, Mattia Pascolini
  • Publication number: 20190312347
    Abstract: An electronic device may be provided with a dielectric cover layer and a conductive layer on the dielectric cover layer. The conductive layer may define an opening. A dielectric spacer may be mounted to the cover layer within the opening. A substrate may be mounted to the spacer. Vertical conductive structures may extend from the conductive layer to the substrate and may laterally surround the spacer. A phased antenna array may be formed on the substrate and aligned with the opening. The cover layer may have a dielectric constant and thickness that are selected to form a quarter wave impedance transformer for the array at a wavelength of operation of the array. The spacer and the conductive structures may exhibit a cavity resonance at the wavelength. The array and the conductive structures may radiate radio-frequency signals at millimeter wave frequencies through the dielectric cover layer.
    Type: Application
    Filed: April 10, 2018
    Publication date: October 10, 2019
    Inventors: Jennifer M. Edwards, Harish Rajagopalan, Simone Paulotto, Bilgehan Avser, Hao Xu, Rodney A. Gomez Angulo, Siwen Yong, Matthew A. Mow, Mattia Pascolini
  • Publication number: 20190267709
    Abstract: An electronic device may be provided with wireless circuitry that includes a phased antenna array. The array may include multiple antennas each having multiple antenna feeds for covering different polarizations. Control circuitry may control the wireless circuitry to transmit signals at millimeter or centimeter wave frequencies using a first set of feeds in the array and at least one selected phase. The wireless circuitry may receive the signals transmitted by the first set of feeds using a second set of feeds in the array. The control circuitry may gather phase measurements for the received signals and may compare the phase measurements to the selected phase to generate phase difference values. The control circuitry may perform external object proximity detection operations based on the phase difference values. The control circuitry may control the wireless circuitry to cycle through different combinations of antenna feeds for the first and second sets.
    Type: Application
    Filed: February 27, 2018
    Publication date: August 29, 2019
    Inventors: Matthew A. Mow, Rodney A. Gomez Angulo, Harish Rajagopalan, Simone Paulotto
  • Publication number: 20190267718
    Abstract: An electronic device may be provided with a sidewall, a display module separated from the sidewall by a gap a display cover, a conductive bucket mounted to the display cover within the gap, and a phased antenna array mounted to the bucket for conveying millimeter wave signals through the display cover. The sidewall may form part of an antenna for conveying non-millimeter wave signals. The array may include resonating elements on a substrate. The resonating elements may be fed using feed terminals coupled to alternating sides of the resonating elements. Dielectric layers having a dielectric constant lower than that of the display cover may be provided on a surface of the display cover within the bucket. The array may operate with satisfactory efficiency despite the small amount of available space within the device, electromagnetic interference from the sidewall and the display module, and dielectric loading by the display cover.
    Type: Application
    Filed: February 27, 2018
    Publication date: August 29, 2019
    Inventors: Harish Rajagopalan, Rodney A. Gomez Angulo, Simone Paulotto, Matthew A. Mow, Bilgehan Avser, Hao Xu, Jennifer M. Edwards, Mattia Pascolini
  • Publication number: 20190265808
    Abstract: A computer stylus may be provided that includes an elongated body with a tip and an opposing end coupled together by a shaft that includes a metal tube. The stylus may include a substrate at the end of the elongated body and conductive traces on the substrate. The traces may form a sensor electrode for a sensor and an antenna resonating element for an antenna in the stylus. The sensor may include an electrode that gathers sensor signals. Control circuitry may wirelessly transmit the sensor signals to external equipment using the antenna. The sensor electrode may be coupled to the metal tube by a filter. The filter may form an open circuit at radio-frequencies and a short circuit at the frequency of the sensor signals. The filter may mitigate deterioration in wireless performance of the antenna associated with the presence of the sensor.
    Type: Application
    Filed: February 27, 2018
    Publication date: August 29, 2019
    Inventors: Lu Zhang, Mattia Pascolini, Yi Jiang, Harish Rajagopalan
  • Publication number: 20190260112
    Abstract: An electronic device may include first, second, and third antennas and conductive housing structures. The first, second, and third antennas may each include slots having open ends defined by gaps in the conductive housing structures. The second antenna may be interposed between the first and third antennas. The first and second antennas may convey signals at the same frequencies. The third antenna may convey signals at a lower frequency than the first and second antennas. A switch may be coupled across the third slot and may have a first state at which the switch forms a closed end of the third slot and a second state at which the third slot has two opposing open ends. Control circuitry may selectively activate one of two feeds for the third antenna and may adjust the switch so that the third antenna exhibits satisfactory antenna efficiency regardless of environmental conditions for the device.
    Type: Application
    Filed: February 20, 2018
    Publication date: August 22, 2019
    Inventors: Umar Azad, Harish Rajagopalan, David Garrido Lopez, Rodney A. Gomez Angulo, Mattia Pascolini
  • Publication number: 20190173158
    Abstract: An electronic device housing may have a rear housing wall that forms a metal ground plane. A slot may be formed in the metal ground plane. The slot may have one or more open ends along an edge of the ground plane. A near-field communications loop antenna may overlap the slot. The near-field communications loop antenna may have one or more turns. A current path through the metal ground plane may form one of the turns in the near-field communications loop antenna. The slot may form portions of non-near-field-communications antennas in addition to the near-field communications loop antenna. The slot in the non-near-field-communications antennas may be fed using an indirect antenna feed structure. Components such as a capacitor and inductor may help allow non-near-field communications antenna and the near-field communications antenna to be formed from common portions of the metal ground plane.
    Type: Application
    Filed: January 18, 2019
    Publication date: June 6, 2019
    Inventors: Umar Azad, Harish Rajagopalan, Mattia Pascolini, Rodney A. Gomez Angulo
  • Patent number: 10290946
    Abstract: An electronic device may have a hybrid antenna that includes a slot resonating element formed from a slot in a ground plane and a planar resonating element formed over the slot. A parasitic element may be disposed over the planar element. A switch may couple the parasitic element to the ground. A tunable circuit may couple the planar element to the ground. The switch and tunable circuit may be placed in different tuning states. In a first state, the tunable circuit and switch form open circuits. In a second state, the tunable circuit may an open circuit and the switch is closed. In a third state, the tunable circuit forms a return path and the switch forms an open circuit. This may allow the antenna to operate with satisfactory efficiency in low, mid, and high bands despite volume constraints imposed on the antenna.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: May 14, 2019
    Assignee: Apple Inc.
    Inventors: Pietro Romano, Harish Rajagopalan, Umar Azad, Lu Zhang, Rodney A. Gomez Angulo, Mattia Pascolini
  • Patent number: 10283844
    Abstract: An electronic device may include a metal housing and a distributed loop antenna. The antenna may include a dielectric carrier. The antenna may include a distributed loop antenna resonating element that extends around the carrier and a loop antenna feed element on the carrier. Portions of the feed element and loop antenna resonating element may be formed from the housing. The feed element may be directly fed and may indirectly feed the distributed loop antenna resonating element via near field electromagnetic coupling. The loop antenna resonating element may include a conductive sheet on the carrier. The conductive sheet and the housing may form a conductive loop path of the loop antenna resonating element. A capacitance may be interposed in the conductive loop path and may be formed by a gap between the conductive sheet and the housing. A speaker driver may be placed within a cavity in the carrier.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: May 7, 2019
    Assignee: Apple Inc.
    Inventors: Harish Rajagopalan, Pietro Romano, Rodney A. Gomez Angulo, Mattia Pascolini
  • Publication number: 20190097314
    Abstract: An electronic device may have peripheral conductive structures and a conductive layer that define edges of a slot element for a slot antenna. The slot element may be configured to cover wireless communications in a 1575 MHz satellite navigation band and 2.4 GHz and 5 GHz wireless local area network bands. A tuning circuit may be coupled across the slot approximately half way across the length of the slot. The antenna tuning circuit may include an inductor coupled in series with a notch filter (in scenarios where the slot is long enough to cover the 1575 MHz satellite navigation band in its fundamental mode) or may include a capacitor coupled in series with a notch or low pass filter. The fundamental mode and one or more harmonic modes of the slot element may cover the satellite navigation and wireless local area network bands.
    Type: Application
    Filed: September 26, 2017
    Publication date: March 28, 2019
    Inventors: Harish Rajagopalan, Pietro Romano, Umar Azad, David Garrido Lopez, Lu Zhang, Rodney A. Gomez Angulo, Mario Martinis, Carlo Di Nallo, Mattia Pascolini
  • Publication number: 20190097306
    Abstract: An electronic device may include a peripheral conductive housing sidewall with an integral ledge extending towards the device interior. A display cover layer may be supported by the integral ledge. A slot antenna may be formed from a slot in the integral ledge. The integral ledge may be mounted to a surface of a substrate and coupled to a conductive rear housing wall by a conductive layer extending over an additional surface of the substrate. The sidewall may include a vertical portion extending from the ledge to the rear wall. The slot antenna may be fed via near-field coupling using a conductive patch that is located within the slot at the surface of the substrate. The conductive layer, rear housing wall, and vertical portion may form a cavity for the slot antenna. The conductive layer may isolate the slot from interference with a battery, display circuitry, or other components.
    Type: Application
    Filed: September 27, 2017
    Publication date: March 28, 2019
    Inventors: Pietro Romano, Umar Azad, Harish Rajagopalan, David Garrido Lopez, Lu Zhang, Rodney A. Gomez Angulo, Mattia Pascolini
  • Patent number: 10224602
    Abstract: An electronic device housing may have a rear housing wall that forms a metal ground plane. A slot may be formed in the metal ground plane. The slot may have one or more open ends along an edge of the ground plane. A near-field communications loop antenna may overlap the slot. The near-field communications loop antenna may have one or more turns. A current path through the metal ground plane may form one of the turns in the near-field communications loop antenna. The slot may form portions of non-near-field-communications antennas in addition to the near-field communications loop antenna. The slot in the non-near-field-communications antennas may be fed using an indirect antenna feed structure. Components such as a capacitor and inductor may help allow non-near-field communications antenna and the near-field communications antenna to be formed from common portions of the metal ground plane.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: March 5, 2019
    Assignee: Apple Inc.
    Inventors: Umar Azad, Harish Rajagopalan, Mattia Pascolini, Rodney A. Gomez Angulo