Patents by Inventor Harold A. Wright

Harold A. Wright has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7223354
    Abstract: A process and catalyst are disclosed for the catalytic partial oxidation of light hydrocarbons to produce synthesis gas at superatmospheric pressures. A preferred catalyst used in the process includes a nickel-magnesium oxide solid solution and at least one promoter chosen from Cr, Mn, Mo, W, Sn, Re, Rh, Ru, Ir, Pt, La, Ce, Sm, Yb, Lu, Bi, Sb, In and P, and oxides thereof, carried on a refractory support.
    Type: Grant
    Filed: January 9, 2003
    Date of Patent: May 29, 2007
    Assignee: ConocoPhillips Company
    Inventors: Sriram Ramani, Joe D. Allison, David M. Minahan, Harold A. Wright
  • Patent number: 7125913
    Abstract: Disclosed are methods and apparatus for producing synthesis gas and higher hydrocarbons from light hydrocarbons and molecular oxygen as well as the higher hydrocarbons produced by the disclosed methods and apparatus. The methods and apparatus disclosed utilize components comprising nickel and nickel alloys.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: October 24, 2006
    Assignee: ConocoPhillips Company
    Inventors: Chien-Ping Pan, Harold A. Wright
  • Patent number: 7115669
    Abstract: A gas-agitated multiphase reactor system that is effective for enabling maximum reactor productivity or minimizing reactor volume comprising at least two stages with or without recycle, wherein inlet gas superficial velocity is at least 20 cm/sec at Fischer-Tropsch synthesis, yielding a total syngas conversion of greater than about 90%, while syngas conversion in each reactor is less than 60%. More specifically, the total reactor volume is held to a minimum such that minimum reactor volume is less than 0.02 cubic meters total reactor volume/(kg C5+/hr production).
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: October 3, 2006
    Assignee: ConocoPhillips Company
    Inventors: Jianping Zhang, Harold A. Wright
  • Publication number: 20060201065
    Abstract: Embodiments include methods and apparatus for mixing feedgases and producing synthesis gas. The apparatus includes a vessel containing a mixing system comprising one or more channels and a reaction zone downstream of the mixing system. A first feedgas and a second feedgas are separately injected into different injection portions of each channel, such that the second feedgas is injected in an acute direction into the first feedgas flowstream. The injected feedgases thereafter mix in a mixing portion of the channel. The mixing portion of each channel may have a reduced cross-sectional area so as to increase the total velocity of the feedgases while they mix. A feedgas mixture exits each channel of the mixing system to feed the reaction zone where it gets converted. Preferred embodiments include mixing O2 with a hydrocarbon gas and converting the mixture in a catalytic reaction zone to produce synthesis gas.
    Type: Application
    Filed: March 9, 2005
    Publication date: September 14, 2006
    Applicant: ConocoPhillips Company
    Inventors: Jamie Lucas, Guy Lewis, Harold Wright, Dale McIntyre, David Minahan, David Anderson
  • Patent number: 7105107
    Abstract: A method is disclosed for converting light hydrocarbons (e.g. methane or natural gas) to synthesis gas employing a nonmicroporous, thin shell catalyst that catalyzes a net partial oxidation reaction. Certain preferred catalysts comprise a thin outer layer comprising at least one catalytically active metal disposed on a discrete nonmicroporous support structure. A preferred thin shell catalyst has an effectiveness factor greater than 0.1 when utilized in a partial oxidation reaction.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: September 12, 2006
    Assignee: ConocoPhillips Company
    Inventors: Sriram Ramani, Yi Jiang, Harold A. Wright
  • Patent number: 7097787
    Abstract: A method of partially oxidizing a feed gas comprises providing a reactor containing a catalyst, providing a gas distributor comprising a body having a plurality of channels therethrough and a plurality of outlets from said channels for distributing gas across the catalyst, feeding the feed gas and the oxygen-containing gas into the gas distributor and allowing the feed gas and the oxygen-containing gas to flow through the gas distributor and out through the outlets into contact with the catalyst. The gas distributor preferably comprises a micro-channel gas distributor, which can be assembled by providing a plurality of etched plates defining flow channels, and stacking and fusing the plates. The reactant gases can be mixed within the gas distributor or maintained separately until they have exited the gas distributor.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: August 29, 2006
    Assignee: ConocoPhillips Company
    Inventors: Guy H. Lewis, Chien-Ping Pan, Harold A. Wright, David H. Anderson, David M. Minahan, Vincent H. Melquist, Cemal Ercan, Gloria I. Straguzzi, Stephen R. Landis, Phillipp R. Ellison
  • Patent number: 7056488
    Abstract: Controlled pore structure catalysts are disclosed that are active for catalyzing the partial oxidation of methane to CO and H2 and, advantageously, are capable of initiating the reaction without the need for an additional ignition source. A preferred catalyst comprises rhodium and samarium supported on an alumina or modified alumina support having certain surface area, pore volume, pore size and metal dispersion characteristics that permit light-off of the reaction at temperatures below 500° C. and with little or no use of an ignition agent. A method of partially oxidizing a light hydrocarbon to form synthesis gas, and a method of enhancing low-temperature light-off of the process are also described.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: June 6, 2006
    Assignee: ConocoPhillips Company
    Inventors: Tianyan Niu, Daxiang Wang, David M. Minahan, Harold A. Wright, Gloria I. Straguzzi
  • Patent number: 7031849
    Abstract: An online device and method for predicting at least one fluid flow parameter in a process (which comprises a bounded flow domain having disposed therein a pre-determined matrix) includes a computer and/or process steps whereby: (i) a memory receives a database, the database comprising location information for a plurality of nodes or particle pathways in the matrix; (ii) input data is received from the process, and (iii) the at least one fluid flow parameter is calculated from the database and the input data. Preferably, structure and/or process steps are provided to adjust the database in the event that the input data does not correspond with at least one pre-determined flow state.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: April 18, 2006
    Assignee: Trojan Technologies Inc.
    Inventors: Yuri Lawryshyn, David A. Olson, Harold Wright
  • Patent number: 7022741
    Abstract: The present invention provides an apparatus and method for optimizing the degree of backmixing within a gas agitated multiphase reactor at a given gas linear velocity. The embodiments of the present invention involve novel configurations of the multiphase reactor internal structures. In general, the configurations comprise creating a dense area of internal structures in the central region and/or wall regions of the multiphase reactor.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: April 4, 2006
    Assignee: ConocoPhillips Company
    Inventors: Yi Jiang, Jianping Zhang, Rafael L. Espinoza, Harold A. Wright
  • Patent number: 7019038
    Abstract: Methods for reducing the average molecular weight of liquid hydrocarbons in a Fischer-Tropsch reactor are disclosed. The preferred embodiments of the present invention are characterized by feeding a hydrocarbon stream, which lowers the average molecular weight of the hydrocarbon liquids inside the reactor, and more preferably by recycling a portion of low-molecular weight hydrocarbon products back into the reactor. Lowering the molecular weight of the hydrocarbon liquids inside the reactor increases the mass transfer and solubility, and diffusivity of the reactants in the hydrocarbons present in the slurry.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: March 28, 2006
    Assignee: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Harold A. Wright, Jianping Zhang
  • Patent number: 7012103
    Abstract: A process for producing hydrocarbons comprises providing a multi-tubular reactor having at least 100 tubes units containing a catalyst, each tube being between 2 and 5 meters tall and in thermal contact with a cooling fluid; feeding hydrogen and carbon monoxide to each tube at a linear gas superficial velocity less than about 60 cm/s; and converting the gas feedstream to hydrocarbons on the catalyst, wherein the yield of hydrocarbons in each tube is greater than 100 (kg hydrocarbons)/hr/(m3 reaction zone). Each tube may have an internal diameter greater than 2 centimeters. The catalyst may be active for Fischer Tropsch synthesis and may comprise cobalt or iron. The maximum difference in the radially-averaged temperature between two points that are axially spaced along the reactor is less than 15° C., preferably less than 10° C. The catalyst loading or intrinsic activity may vary along the length of the reactor.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: March 14, 2006
    Assignee: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Jianping Zhang, Harold A. Wright, Todd H. Harkins
  • Patent number: 7001867
    Abstract: The present invention relates to improved catalyst compositions, as well as methods of making and using such compositions. In particular, preferred embodiments of the present invention comprise rare earth catalyst supports, catalyst compositions having rare earth supports, and methods of preparing and using the catalysts and supports. Accordingly, the present invention also encompasses an improved method for converting a hydrocarbon containing gas and an oxygen containing gas to a gas mixture comprising hydrogen and carbon monoxide, i.e., syngas, using the rare earth catalyst supports in accordance with the present invention. In addition, the present invention contemplates an improved method for converting hydrocarbon gas to liquid hydrocarbons using the novel syngas catalyst supports and compositions described herein.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: February 21, 2006
    Assignee: ConocoPhillips Company
    Inventors: Yaming Jin, Tianyan Niu, Harold A. Wright
  • Patent number: 7001927
    Abstract: A method for water removal in hydrocarbon product reactors operating at Fischer-Tropsch conditions. The water removal decreases the concentration of water in the reactor. In one embodiment, a method of reducing the concentration of water in a Fischer-Tropsch reactor containing a water-rich hydrocarbon product includes removing water from the water-rich hydrocarbon product of the reactor by a water removal means so as to form a water-reduced hydrocarbon product and returning that product to the reactor.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: February 21, 2006
    Assignee: ConocoPhillips Company
    Inventors: Jianping Zhang, Harold A. Wright, Yi Jiang, Joe D. Allison, Kenneth M. York, Sergio R. Mohedas, Vincent H. Melquist
  • Publication number: 20060029539
    Abstract: This invention relates to methods for reacting a hydrocarbon, molecular oxygen, and optionally water and/or carbon dioxide, to form synthesis gas. The preferred embodiments are characterized by delivering a substochiometric amount of oxygen to each of a multitude of reaction zones, which allows for optimum design of the catalytic packed bed and the gas distribution system, and for the optimization and control of the temperature profile of the reaction zones. The multitude of reaction zones may include a series of successive fixed beds, or a continuous zone housed within an internal structure having porous, or perforated, walls, through which an oxygen-containing stream can permeate. By controlling the oxygen supply, the temperatures, conversion, and product selectivity of the reaction can be in turn controlled and optimized. Furthermore the potential risks of explosion associated with mixing hydrocarbon and molecular oxygen is minimized with increased feed carbon-to-oxygen molar ratios.
    Type: Application
    Filed: August 6, 2004
    Publication date: February 9, 2006
    Applicant: ConocoPhillips Company
    Inventors: Subhash Dutta, Harold Wright
  • Patent number: 6992112
    Abstract: The present invention is an improvement in the preparation of liquid hydrocarbons from natural gas/methane, oxygen and/or steam. In particular, the present invention relates to processes for the production of synthesis gas, reducing the oxygen concentration from the synthesis gas, and the production of liquid hydrocarbons using the oxygen reduced synthesis gas as a feedstock. More particularly, the present invention described herein identifies catalyst compositions, apparatus and methods of using such catalysts and apparatus for preparing liquid hydrocarbons via oxygen reduced synthesis gas all in accordance with the present invention.
    Type: Grant
    Filed: April 12, 2004
    Date of Patent: January 31, 2006
    Assignee: ConocoPhillips Company
    Inventors: Daxiang Wang, Harold A. Wright, Beatrice C. Ortego, Sinh Trinh, Rafael Espinoza
  • Publication number: 20060013759
    Abstract: Disclosed herein are systems and methods for producing hydrogen in a reactor having a non-catalytic hydrogen selective permeable membrane in thermal contact with a reaction zone.
    Type: Application
    Filed: July 13, 2004
    Publication date: January 19, 2006
    Applicant: ConocoPhillips Company
    Inventors: Yi Jiang, Harold Wright, Doug Jack
  • Patent number: 6974843
    Abstract: Disclosed herein are methods and apparatuses for cogenerating organic compounds (e.g., benzene, toluene, xylene, formate, acetate, propionate, butyrate, C1-C4 acids, C1-C4 alcohols, methanol, naphthalene, acenaphthylene, fluorene, phenanthrene, anthracene, fluoranthene, and pyrene) along with synthesis gas in a synthesis gas reactor, preferably a catalytic partial oxidation reactor.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: December 13, 2005
    Assignee: Conoco Phillips Company
    Inventors: Gloria I. Straguzzi, Mary E. Wolf, Harold A. Wright
  • Publication number: 20050265920
    Abstract: The present invention relates to thermally stable supports and catalysts for use in high temperature operation, and methods of preparing such supports and catalysts, which includes adding a rare earth metal to an aluminum-containing precursor prior to calcining. The present invention can be more specifically seen as a support, process and catalyst wherein the thermally stable support comprises two rare earth aluminates of different molar ratios of aluminum to rare earth metal, and optionally, alumina and/or a rare earth oxide. More particularly, the invention relates to the use of noble metal catalysts comprising the thermally stable support for synthesis gas production via partial oxidation of light hydrocarbon (e.g., methane) with minimal deactivation over long-term operations and further relates to gas-to-liquids conversion processes.
    Type: Application
    Filed: May 27, 2005
    Publication date: December 1, 2005
    Applicant: ConocoPhillips Company
    Inventors: Cemal Ercan, Shuibo Xie, Harold Wright, Yaming Jin, Daxiang Wang, Kristi Fjare, David Minahan, Beatrice Ortego, David Simon
  • Publication number: 20050261383
    Abstract: The present invention relates to improved catalyst compositions, as well as methods of making and using such compositions. Preferred embodiments of the present invention comprise catalyst compositions having high melting point metallic alloys, and methods of preparing and using the catalysts. In particular, the metallic alloys are preferably rhodium alloys. Accordingly, the present invention also encompasses an improved method for converting a hydrocarbon containing gas and an atomic oxygen-containing gas to a gas mixture comprising hydrogen and carbon monoxide, i.e., syngas, using the catalyst compositions in accordance with the present invention. In addition, the present invention contemplates an improved method for converting hydrocarbon gas to liquid hydrocarbons using the novel syngas catalyst compositions described herein.
    Type: Application
    Filed: November 12, 2003
    Publication date: November 24, 2005
    Applicant: ConocoPhillips Company
    Inventors: Shuibo Xie, Chad Ricketson, David Minahan, Yaming Jin, Harold Wright
  • Patent number: 6962947
    Abstract: A process is disclosed for regenerating a catalyst used in a process for synthesizing hydrocarbons. The synthesis process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons. The regeneration process involves contacting a deactivated Fischer-Tropsch catalyst with a regeneration gas under regeneration-promoting conditions that include a pressure lower than the mean Fischer-Tropsch reaction pressure, for a period of time sufficient to reactivate the Fischer-Tropsch catalyst.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: November 8, 2005
    Assignee: ConocoPhillips Company
    Inventors: Harold A. Wright, Ajoy P. Raje, Rafael L. Espinoza