Patents by Inventor Harold A. Wright

Harold A. Wright has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6958309
    Abstract: A pretreatment method for increasing the average pore size of a catalyst support is disclosed which increases the diffusivity and effectiveness factor ?. The pretreatment method includes calcining the support in moisturized air at an elevated temperature sufficient to increase the average pore size. In some embodiments, the support may be treated with an acidic/basic solution prior to the calcination step. Alternatively, the calcination step may occur in a gas mixture including water/air/acidic (or basic) gases.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: October 25, 2005
    Assignee: ConocoPhillips Company
    Inventors: Daxiang Wang, Tianyan Niu, Gloria I. Straguzzi, Harold A. Wright, Robin G. Cnossen
  • Publication number: 20050209349
    Abstract: The present invention relates to a process for the preparation of synthesis gas (i.e., a mixture of carbon monoxide and hydrogen), typically labeled syngas. More particularly, the present invention relates to a regeneration method for a syngas catalyst. Still more particularly, the present invention relates to the regeneration of syngas catalysts using a re-dispersion technique. One embodiment of the re-dispersion technique involves the treatment of a deactivated syngas catalyst with a re-dispersing gas, preferably a carbon monoxide-containing gas such as syngas. If necessary, the catalyst is then exposed to hydrogen for reduction and further re-dispersion.
    Type: Application
    Filed: April 25, 2005
    Publication date: September 22, 2005
    Applicant: Conoco Inc.
    Inventors: Daxiang Wang, Baili Hu, Yaming Jin, Harold Wright
  • Patent number: 6946114
    Abstract: Lanthanide-promoted rhodium-containing supported catalysts that are active for catalyzing the net partial oxidation of methane to CO and H2 are disclosed, along with their manner of making and high efficiency processes for producing synthesis gas employing the new catalysts. A preferred catalyst comprises highly dispersed, high surface area rhodium on a granular zirconia support with an intermediate coating of a lanthanide metal and/or oxide thereof and is thermally conditioned during catalyst preparation. In a preferred syngas production process a stream of methane-containing gas and O2 is passed over a thermally conditioned, high surface area Rh/Sm/zirconia granular catalyst in a short contact time reactor to produce a mixture of carbon monoxide and hydrogen.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: September 20, 2005
    Assignee: ConocoPhillips Company
    Inventors: Joe D. Allison, Larry D. Swinney, Tianyan Niu, Kevin L. Ricketson, Daxiang Wang, Sriram Ramani, Gloria I. Straguzzi, David M. Minahan, Harold A. Wright, Baili Hu
  • Patent number: 6923922
    Abstract: A method for the recovery of rhodium from spent supported catalysts. In one embodiment, a method for recovering rhodium from a host material includes roasting the host material in air at a temperature sufficient to convert at least a portion of rhodium to Rh2O3, leaching the host material in a solution with a leaching constituent which is reactive with Rh2O3 to form a first intermediate species, reacting the first intermediate species in a solution with an acidifying constituent or complexing agent to form a second intermediate species, and purifying the second intermediate species. Preferably, the roasting temperature is approximately from 600° C. to 800° C. for 0.5 to 10 hours. In some embodiments, the host material is ground to particles in the range of 0.1 to 10 mm.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: August 2, 2005
    Assignee: ConocoPhillips Company
    Inventors: Zhen Chen, Kevin L. Ricketson, Baili Hu, Harold A. Wright, Joe D. Allison
  • Publication number: 20050124706
    Abstract: A process is disclosed for regenerating a catalyst used in a process for synthesizing hydrocarbons. The synthesis process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons. The regeneration process involves contacting a deactivated Fischer-Tropsch catalyst with a regeneration gas under regeneration-promoting conditions that include a pressure lower than the mean Fischer-Tropsch reaction pressure, for a period of time sufficient to reactivate the Fischer-Tropsch catalyst.
    Type: Application
    Filed: January 13, 2005
    Publication date: June 9, 2005
    Applicant: ConocoPhillips Company
    Inventors: Harold Wright, Ajoy Raje, Rafael Espinoza
  • Publication number: 20050112047
    Abstract: Lanthanide-promoted rhodium-containing supported catalysts that are active for catalyzing the net partial oxidation of methane to CO and H2 are disclosed, along with their manner of making and high efficiency processes for producing synthesis gas employing the new catalysts. A preferred catalyst comprises highly dispersed, high surface area rhodium on a granular zirconia support with an intermediate coating of a lanthanide metal and/or oxide thereof and is thermally conditioned during catalyst preparation. In a preferred syngas production process a stream of methane-containing gas and O2 is passed over a thermally conditioned, high surface area Rh/Sm/zirconia granular catalyst in a short contact time reactor to produce a mixture of carbon monoxide and hydrogen.
    Type: Application
    Filed: January 3, 2005
    Publication date: May 26, 2005
    Applicant: ConocoPhillips Company
    Inventors: Joe Allison, Larry Swinney, Tianyan Niu, Kevin Ricketson, Daxiang Wang, Sriram Ramani, Gloria Straguzzi, David Minahan, Harold Wright, Baili Hu
  • Patent number: 6896868
    Abstract: The present invention relates to a process for the preparation of synthesis gas (i.e., a mixture of carbon monoxide and hydrogen), typically labeled syngas. More particularly, the present invention relates to a regeneration method for a syngas catalyst. Still more particularly, the present invention relates to the regeneration of syngas catalysts using a re-dispersion technique. One embodiment of the re-dispersion technique involves the treatment of a deactivated syngas catalyst with a re-dispersing gas, preferably a carbon monoxide-containing gas such as syngas. If necessary, the catalyst is then exposed to hydrogen for reduction and further re-dispersion.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: May 24, 2005
    Assignee: ConocoPhillips Company
    Inventors: Daxiang Wang, Baili Hu, Yaming Jin, Harold A. Wright
  • Publication number: 20050096215
    Abstract: A catalytic partial oxidation process for producing synthesis gas is disclosed which comprises passing a light hydrocarbon and oxygen mixture over a composite catalyst to produce a mixture of carbon monoxide and hydrogen. Preferred composite catalysts are prepared by mixing together discrete particles of catalytic metal and of promoter. The resulting catalyst resists deactivation due to reaction between the active metal and the promoter. A catalyst and method for making a catalyst and a method for making middle distillates from light hydrocarbons are also disclosed.
    Type: Application
    Filed: October 31, 2003
    Publication date: May 5, 2005
    Applicant: ConocoPhillips Company
    Inventors: Rafael Espinoza, Harold Wright, Tianyan Niu, Kandaswamy Jothimurugesan
  • Patent number: 6869978
    Abstract: A process is disclosed for regenerating a catalyst used in a process for synthesizing hydrocarbons. The synthesis process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons. The regeneration process involves contacting a deactivated Fischer-Tropsch catalyst with a regeneration gas under regeneration-promoting conditions that include a pressure lower than the mean Fischer-Tropsch reaction pressure, for a period of time sufficient to reactivate the Fischer-Tropsch catalyst.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: March 22, 2005
    Assignee: ConocoPhillips Company
    Inventors: Harold A. Wright, Ajoy P. Raje, Rafael L. Espinoza
  • Publication number: 20040235967
    Abstract: Methods for reducing the average molecular weight of liquid hydrocarbons in a Fischer-Tropsch reactor are disclosed. The preferred embodiments of the present invention are characterized by feeding a hydrocarbon stream, which lowers the average molecular weight of the hydrocarbon liquids inside the reactor, and more preferably by recycling a portion of low-molecular weight hydrocarbon products back into the reactor. Lowering the molecular weight of the hydrocarbon liquids inside the reactor increases the mass transfer and solubility, and diffusivity of the reactants in the hydrocarbons present in the slurry.
    Type: Application
    Filed: May 23, 2003
    Publication date: November 25, 2004
    Applicant: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Harold A. Wright, Jianping Zhang
  • Publication number: 20040221508
    Abstract: The present invention relates to improved catalyst compositions, as well as methods of making and using such compositions. In particular, preferred embodiments of the present invention comprise rare earth catalyst supports, catalyst compositions having rare earth supports, and methods of preparing and using the catalysts and supports. Accordingly, the present invention also encompasses an improved method for converting a hydrocarbon containing gas and an oxygen containing gas to a gas mixture comprising hydrogen and carbon monoxide, i.e., syngas, using the rare earth catalyst supports in accordance with the present invention. In addition, the present invention contemplates an improved method for converting hydrocarbon gas to liquid hydrocarbons using the novel syngas catalyst supports and compositions described herein.
    Type: Application
    Filed: May 21, 2002
    Publication date: November 11, 2004
    Applicant: Conoco Inc.
    Inventors: Yaming Jin, Tianyan Niu, Harold A. Wright
  • Publication number: 20040202607
    Abstract: A method for the recovery of rhodium from spent supported catalysts. In one embodiment, a method for recovering rhodium from a host material includes roasting the host material in air at a temperature sufficient to convert at least a portion of rhodium to Rh2O3, leaching the host material in a solution with a leaching constituent which is reactive with Rh2O3 to form a first intermediate species, reacting the first intermediate species in a solution with an acidifying constituent or complexing agent to form a second intermediate species, and purifying the second intermediate species. Preferably, the roasting temperature is approximately from 600° C. to 800° C. for 0.5 to 10 hours. In some embodiments, the host material is ground to particles in the range of 0.1 to 10 mm.
    Type: Application
    Filed: April 21, 2004
    Publication date: October 14, 2004
    Applicant: ConocoPhillips Company
    Inventors: Zhen Chen, Kevin L. Ricketson, Baili Hu, Harold A. Wright, Joe D. Allison
  • Publication number: 20040198845
    Abstract: The present invention is an improvement in the preparation of liquid hydrocarbons from natural gas/methane, oxygen and/or steam. In particular, the present invention relates to processes for the production of synthesis gas, reducing the oxygen concentration from the synthesis gas, and the production of liquid hydrocarbons using the oxygen reduced synthesis gas as a feedstock. More particularly, the present invention described herein identifies catalyst compositions, apparatus and methods of using such catalysts and apparatus for preparing liquid hydrocarbons via oxygen reduced synthesis gas all in accordance with the present invention.
    Type: Application
    Filed: April 12, 2004
    Publication date: October 7, 2004
    Applicant: ConocoPhilips Company
    Inventors: Daxiang Wang, Harold A. Wright, Beatrice C. Ortego, Sinh Trinh, Rafael Espinoza
  • Publication number: 20040198844
    Abstract: Disclosed herein are methods and apparatuses for cogenerating organic compounds (e.g., benzene, toluene, xylene, formate, acetate, propionate, butyrate, C1-C4 acids, C1-C4 alcohols, methanol, naphthalene, acenaphthylene, fluorene, phenanthrene, anthracene, fluoranthene, and pyrene) along with synthesis gas in a synthesis gas reactor, preferably a catalytic partial oxidation reactor.
    Type: Application
    Filed: April 2, 2003
    Publication date: October 7, 2004
    Applicant: ConocoPhillips Company
    Inventors: Gloria I. Straguzzi, Mary E. Wolf, Harold A. Wright
  • Publication number: 20040192989
    Abstract: A process for producing hydrocarbons comprises providing a multi-tubular reactor having at least 100 tubes units containing a catalyst, each tube being between 2 and 5 meters tall and in thermal contact with a cooling fluid; feeding hydrogen and carbon monoxide to each tube at a linear gas superficial velocity less than about 60 cm/s; and converting the gas feedstream to hydrocarbons on the catalyst, wherein the yield of hydrocarbons in each tube is greater than 100 (kg hydrocarbons)/hr/(m3 reaction zone). Each tube may have an internal diameter greater than 2 centimeters. The catalyst may be active for Fischer Tropsch synthesis and may comprise cobalt or iron. The maximum difference in the radially-averaged temperature between two points that are axially spaced along the reactor is less than 15° C., preferably less than 10° C. The catalyst loading or intrinsic activity may vary along the length of the reactor.
    Type: Application
    Filed: March 24, 2003
    Publication date: September 30, 2004
    Applicant: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Jianping Zhang, Harold A. Wright, Todd H. Harkins
  • Publication number: 20040192792
    Abstract: The present invention relates to improved catalyst compositions, as well as methods of making and using such compositions to prepare synthesis gas and ultimately C5+ hydrocarbons. In particular, preferred embodiments of the present invention comprise catalyst systems comprising a core and an outer region disposed on said core, wherein a substantial amount of the catalytic metal is located in the outer region of the catalyst support matrix. In addition, the catalyst systems are able to maintain high conversion and selectivity values with very low catalytically active metal loadings. The catalyst systems are appropriate for improved syngas, oxidative dehydrogenation and other partial oxidation reactions, including improved reaction schemes for the conversion of hydrocarbon gas to C5+ hydrocarbons.
    Type: Application
    Filed: December 29, 2003
    Publication date: September 30, 2004
    Applicant: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Kandaswamy Jothimurugesan, Tianyan Niu, Harold A. Wright, Shuibo Xie, Mary E. Wolf
  • Publication number: 20040192987
    Abstract: The present invention provides an apparatus and method for optimizing the degree of backmixing within a gas agitated multiphase reactor at a given gas linear velocity. The embodiments of the present invention involve novel configurations of the multiphase reactor internal structures. In general, the configurations comprise creating a dense area of internal structures in the central region and/or wall regions of the multiphase reactor.
    Type: Application
    Filed: March 28, 2003
    Publication date: September 30, 2004
    Applicant: ConocoPhillips Company
    Inventors: Yi Jiang, Jianping Zhang, Rafael L. Espinoza, Harold A. Wright
  • Publication number: 20040180975
    Abstract: Disclosed are methods and apparatus for producing synthesis gas and higher hydrocarbons from light hydrocarbons and molecular oxygen as well as the higher hydrocarbons produced by the disclosed methods and apparatus. The methods and apparatus disclosed utilize components comprising nickel and nickel alloys.
    Type: Application
    Filed: March 14, 2003
    Publication date: September 16, 2004
    Applicant: ConocoPhillips Company
    Inventors: Chien-Ping Pan, Harold A. Wright
  • Publication number: 20040171900
    Abstract: The present invention includes methods and apparatus for start-up a chemical reactor wherein at least a portion of the igniter is downstream from the reaction zone which needs to be ignited. Particularly, embodiments of the present invention include a partial oxidation reactor with an igniter downstream of the partial oxidation zone.
    Type: Application
    Filed: February 28, 2003
    Publication date: September 2, 2004
    Applicant: ConocoPhillips Company
    Inventors: Daxiang Wang, Chad Ricketson, Gloria I. Straguzzi, Harold A. Wright, Larry D. Swinney, Joe D. Allison, Zhen Chen, Kevin L. Ricketson, Shang Y. Chen, Steven R. McDonald
  • Publication number: 20040147619
    Abstract: The present invention discloses synthesis gas catalysts, and methods for making such catalysts, that are active for promoting partial oxidation of light hydrocarbons to CO and H2. The catalysts comprise a support and an active metal. The catalysts may further comprise a promoter and halide or a rare earth oxyhalide. The present invention further discloses a method for producing synthesis gas by net partial oxidation of light hydrocarbons by contacting O2 and light hydrocarbons in the presence of a synthesis gas catalyst as previously described. The present invention also describes a method for extending the life of a synthesis gas catalyst by contacting the catalyst with a halide. A method for making middle distillates from light hydrocarbons by partial oxidation of light hydrocarbons over a synthesis gas catalyst as previously described and Fischer-Tropsch reaction is also disclosed.
    Type: Application
    Filed: January 23, 2003
    Publication date: July 29, 2004
    Applicant: ConocoPhillips Company
    Inventors: Tianyan Niu, Kevin L. Coy, David M. Minahan, Harold A. Wright