Patents by Inventor Harold Walder

Harold Walder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10596387
    Abstract: A system and method for imaging or treating a disease in a human or animal body. The system provides to the human or animal body a pharmaceutical carrier including one or more phosphors which are capable of emitting ultraviolet or visible light into the body and which provide x-ray contrast. The system includes one or more devices which infuse a diseased site with a photoactivatable drug and the pharmaceutical carrier, an initiation energy source comprising an x-ray or high energy source which irradiates the diseased site with at least one of x-rays, gamma rays, or electrons to thereby initiate emission of said ultraviolet or visible light into the body, and a processor programmed to at least one of 1) produce images of the diseased site or 2) control a dose of said x-rays, gamma rays, or electrons to the diseased site for production of said ultraviolet or visible light at the diseased site to activate the photoactivatable drug.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: March 24, 2020
    Assignees: IMMUNOLIGHT, LLC., DUKE UNIVERSITY
    Inventors: Harold Walder, Frederic A. Bourke, Zakaryae Fathi, Wayne F. Beyer, Mark W. Dewhirst, Mark Oldham, Justus Adamson, Michael Nolan
  • Patent number: 10593642
    Abstract: A curable resin or adhesive composition includes at least one monomer, a photoinitiator capable of initiating polymerization of the monomer when exposed to light, and at least one energy converting material, preferably a phosphor, capable of producing light when exposed to radiation (typically X-rays). The material is particularly suitable for bonding components at ambient temperature in situations where the bond joint is not accessible to an external light source.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: March 17, 2020
    Assignee: IMMUNOLIGHT, LLC.
    Inventors: Zakaryae Fathi, James Clayton, Harold Walder, Frederic A. Bourke, Jr.
  • Publication number: 20200078600
    Abstract: Products, compositions, systems, and methods for modifying a target structure which mediates or is associated with a biological activity, including treatment of conditions, disorders, or diseases mediated by or associated with a target structure, such as a virus, cell, subcellular structure or extracellular structure. The methods may be performed in situ in a non-invasive manner by placing a nanoparticle having a metallic shell on at least a fraction of a surface in a vicinity of a target structure in a subject and applying an initiation energy to a subject thus producing an effect on or change to the target structure directly or via a modulation agent. The nanoparticle is configured, upon exposure to a first wavelength ?1, to generate a second wavelength ?2 of radiation having a higher energy than the first wavelength ?1.
    Type: Application
    Filed: July 19, 2019
    Publication date: March 12, 2020
    Applicants: Immunolight, LLC., Duke University
    Inventors: Tuan VO-DINH, Jonathan P. SCAFFIDI, Venkata Gopal Reddy CHADA, Benoit LAULY, Yan ZHANG, Molly K. GREGAS, Ian Nicholas STANTON, Joshua T. STECHER, Michael J. THERIEN, Frederic A. BOURKE, JR., Harold WALDER, Zak FATHI, Jennifer A. AYRES, Zhenyuan ZHANG, Joseph H. SIMMONS, Stephen John NORTON
  • Patent number: 10575541
    Abstract: A phosphor composition, containing one or more phosphors having on a surface thereof a coating selected from silica, diamond, and diamond-like carbon, wherein the one or more phosphors are configured to emit radiation upon interaction with an initiation energy.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: March 3, 2020
    Assignee: IMMUNOLIGHT, LLC.
    Inventors: Frederic A. Bourke, Jr., Zakaryae Fathi, Harold Walder, Wayne F. Beyer, Jr.
  • Publication number: 20200009398
    Abstract: A system for treating a diseased site in a human or animal body. The system includes a pharmaceutical carrier including one or more phosphors which are capable of emitting light into the diseased site upon interaction, a photoactivatable drug for intercalating into DNA of cells at the diseased site, one or more devices which infuse the diseased sited with the photoactivatable drug and the pharmaceutical carrier, an x-ray or high energy electron source, and a processor programmed to control a dose of x-rays or electrons to the diseased site for production of light inside the tumor to activate the photoactivatable drug.
    Type: Application
    Filed: August 29, 2019
    Publication date: January 9, 2020
    Applicants: IMMUNOLIGHT, LLC., DUKE UNIVERSITY
    Inventors: Mark OLDHAM, Zakaryae FATHI, Wayne F. BEYER, Frederic A. BOURKE, JR., Harold WALDER, Mark DEWHIRST, Neil L. SPECTOR, Paul YOON, Justus ADAMSON, David ALCORTA, Kim LYERLY, Leihua LIU, Takuya OSADA
  • Patent number: 10493296
    Abstract: Products, compositions, systems, and methods for modifying a target structure which mediates or is associated with a biological activity, including treatment of conditions, disorders, or diseases mediated by or associated with a target structure, such as a virus, cell, subcellular structure or extracellular structure. The methods may be performed in situ in a non-invasive manner by placing a nanoparticle having a metallic shell on at least a fraction of a surface in a vicinity of a target structure in a subject and applying an initiation energy to a subject thus producing an effect on or change to the target structure directly or via a modulation agent. The nanoparticle is configured, upon exposure to a first wavelength ?1, to generate a second wavelength ?2 of radiation having a higher energy than the first wavelength ?1.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: December 3, 2019
    Assignees: IMMUNOLIGHT, LLC, DUKE UNIVERSITY
    Inventors: Tuan Vo-Dinh, Jonathan P. Scaffidi, Venkata Gopal Reddy Chada, Benoit Lauly, Yan Zhang, Molly K. Gregas, Ian Nicholas Stanton, Joshua T. Stecher, Michael J. Therien, Frederic A. Bourke, Jr., Harold Walder, Zak Fathi, Jennifer A. Ayres, Zhenyuan Zhang, Joseph H. Simmons, Stephen John Norton
  • Publication number: 20190336785
    Abstract: Products, compositions, systems, and methods for modifying a target structure which mediates or is associated with a biological activity, including treatment of conditions, disorders, or diseases mediated by or associated with a target structure, such as a virus, cell, subcellular structure or extracellular structure. The methods may be performed in situ in a non-invasive manner by placing a nanoparticle having a metallic shell on at least a fraction of a surface in a vicinity of a target structure in a subject and applying an initiation energy to a subject thus producing an effect on or change to the target structure directly or via a modulation agent. The nanoparticle is configured, upon exposure to a first wavelength ?1, to generate a second wavelength ?2 of radiation having a higher energy than the first wavelength ?1.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 7, 2019
    Applicants: IMMUNOLIGHT, LLC, DUKE UNIVERSITY
    Inventors: Tuan VO-DINH, Jonathan P. Scaffidi, Venkata Gopal Reddy Chada, Benoit Lauly, Yan Zhang, Molly K. Gregas, Ian Nicholas Stanton, Joshua T. Stecher, Michael J. Therien, Frederic A. Bourke, JR., Harold Walder, Zak Fathi, Jennifer A. Ayres, Zhenyuan Zhang, Joseph H. Simmons, Stephen John Norton
  • Publication number: 20190341364
    Abstract: A method of and system for adhesive bonding by a) providing a polymerizable adhesive composition on a surface of an element to be bonded to form an assembly; b) irradiating the assembly with radiation at a first wavelength capable of vulcanization of bonds in the polymerizable adhesive composition by activation of sulfur-containing compound with at least one selected from x-ray, e-beam, visible, or infrared light to thereby generate ultraviolet light in the polymerizable adhesive composition; and c) adhesively joining two or more components together by way of the polymerizable adhesive composition.
    Type: Application
    Filed: July 18, 2019
    Publication date: November 7, 2019
    Applicant: Immunolight, LLC
    Inventors: Zakaryae FATHI, Frederic A. Bourke, JR., Harold Walder
  • Publication number: 20190336786
    Abstract: Products, compositions, systems, and methods for modifying a target structure which mediates or is associated with a biological activity, including treatment of conditions, disorders, or diseases mediated by or associated with a target structure, such as a virus, cell, subcellular structure or extracellular structure. The methods may be performed in situ in a non-invasive manner by application of an initiation energy to a subject thus producing an effect on or change to the target structure directly or via a modulation agent. The methods may further be performed by application of an initiation energy to a subject in situ to activate a pharmaceutical agent directly or via an energy modulation agent, optionally in the presence of one or more plasmonics active agents, thus producing an effect on or change to the target structure. Kits containing products or compositions formulated or configured and systems for use in practicing these methods.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 7, 2019
    Applicants: Immunolight, LLC., Duke University
    Inventors: Frederic A. BOURKE, JR., Tuan VO-DINH, Harold WALDER
  • Patent number: 10441810
    Abstract: A system for treating a diseased site in a human or animal body. The system includes a pharmaceutical carrier including one or more phosphors which are capable of emitting light into the diseased site upon interaction, a photoactivatable drug for intercalating into DNA of cells at the diseased site, one or more devices which infuse the diseased sited with the photoactivatable drug and the pharmaceutical carrier, an x-ray or high energy electron source, and a processor programmed to control a dose of x-rays or electrons to the diseased site for production of light inside the tumor to activate the photoactivatable drug.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: October 15, 2019
    Assignees: IMMUNOLIGHT, LLC, DUKE UNIVERSITY
    Inventors: Mark Oldham, Zakaryae Fathi, Wayne F. Beyer, Harold Walder, Frederic A. Bourke, Jr., Mark Dewhirst, Neil L. Spector, Paul Yoon, Justus Adamson, David Alcorta, Kim Lyerly, Leihua Liu, Takuya Osada
  • Patent number: 10410991
    Abstract: A method of and system for adhesive bonding. The method and system a) treat a surface of an element to be bonded to provide an adherent structure including one or more rubber compounds on the surface; b) place a polymerizable adhesive composition, including at least one photoinitiator and at least one energy converting material, in contact with the adherent structure and two or more components to be bonded to form an assembly, c) irradiated the assembly with radiation at a first wavelength, capable of conversion by the at least one energy converting material, to a second wavelength capable of activating the at least one photoinitiator to produce from the polymerizable adhesive composition a cured adhesive composition; and d) adhesively join the two or more components by way of the adherent structure and the cured adhesive composition.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: September 10, 2019
    Assignee: IMMUNOLIGHT, LLC
    Inventors: Zakaryae Fathi, Frederic A. Bourke, Jr., Harold Walder
  • Patent number: 10391330
    Abstract: Products, compositions, systems, and methods for modifying a target structure which mediates or is associated with a biological activity, including treatment of conditions, disorders, or diseases mediated by or associated with a target structure, such as a virus, cell, subcellular structure or extracellular structure. The methods may be performed in situ in a non-invasive manner by application of an initiation energy to a subject thus producing an effect on or change to the target structure directly or via a modulation agent. The methods may further be performed by application of an initiation energy to a subject in situ to activate a pharmaceutical agent directly or via an energy modulation agent, optionally in the presence of one or more plasmonics active agents, thus producing an effect on or change to the target structure. Kits containing products or compositions formulated or configured and systems for use in practicing these methods.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: August 27, 2019
    Assignees: IMMUNOLIGHT, LLC, DUKE UNIVERSITY
    Inventors: Frederic A. Bourke, Jr., Tuan Vo-Dinh, Harold Walder
  • Patent number: 10384071
    Abstract: System for modifying a target structure which mediates or is associated with a biological activity, including treatment of conditions, disorders, or diseases mediated by or associated with a target structure, such as a virus, cell, subcellular structure or extracellular structure. The system can be used in methods which can be performed by application of an initiation energy to a subject in situ to activate a pharmaceutical agent directly or via an energy modulation agent, optionally in the presence of one or more plasmonics active agents, thus producing an effect on or change to the target structure.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: August 20, 2019
    Assignees: IMMUNOLIGHT, LLC., DUKE UNIVERSITY
    Inventors: Tuan Vo-Dinh, Jonathan P. Scaffidi, Venkata Gopal Reddy Chada, Benoit Lauly, Yan Zhang, Molly K. Gregas, Ian Nicholas Stanton, Joshua T. Stecher, Michael J. Therien, Frederic A. Bourke, Jr., Harold Walder, Zak Fathi, Jennifer A. Ayres, Zhenyuan Zhang, Joseph H. Simmons, Stephen John Norton
  • Publication number: 20190184190
    Abstract: A phosphor-containing drug activator activatable from a Monte Carlo derived x-ray exposure for treatment of a diseased site. The activator includes an admixture or suspension of one or more phosphors capable of emitting ultraviolet and visible light upon interaction with x-rays, wherein a distribution of the phosphors in the diseased target site is based on a Monte Carlo derived x-ray dose distribution. A system for treating a disease in a subject in need thereof, includes the drug activator and a photoactivatable drug, one or more devices which infuse the photoactivatable drug and the activator including the pharmaceutically acceptable carrier into a diseased site in the subject; and an x-ray source which is controlled to deliver the Monte Carlo derived x-ray exposure to the subject for production of ultraviolet and visible light inside the subject to activate the photoactivatable drug and induce a persistent therapeutic response, the dose comprising a pulsed sequence of x-rays delivering from 0.
    Type: Application
    Filed: August 1, 2017
    Publication date: June 20, 2019
    Applicants: IMMUNOLIGHT, LLC, DUKE UNIVERSITY
    Inventors: Harold WALDER, Frederic A. BOURKE, Zakaryae FATHI, Wayne BEYER, Mark OLDHAM, Justus ADAMSON, Paul YOON
  • Publication number: 20190168015
    Abstract: A system and method for light stimulation within a medium. The system has a reduced-voltage x-ray source configured to generate x-rays from a peak applied cathode voltage at or below 105 kVp, and a plurality of energy-emitting particles in the medium which, upon radiation from the x-ray source, radiate at a first lower energy than the x-ray source to interact witht least one photoactivatable agent in the medium. The method introduces the plurality of energy-emitting particles into the medium, radiates the energy-emitting particles in the medium with x-rays generated from a peak applied cathode voltage at or below 105 kVp; and emits a lower energy than the x-ray source to interact with the medium or with at least one photoactivatable agent in the medium.
    Type: Application
    Filed: January 18, 2019
    Publication date: June 6, 2019
    Applicants: IMMUNOLIGHT, LLC., DUKE UNIVERSITY
    Inventors: Frederic A. BOURKE, JR., Harold Walder, Zakaryae Fathi, Michael J. Therien, Mark W. Dewhirst, Ian N. Stanton, Jennifer Ann Ayres, Diane Renee Fels, Joseph A. Herbert
  • Publication number: 20190157234
    Abstract: A curable resin or adhesive composition includes at least one monomer, a photoinitiator capable of initiating polymerization of the monomer when exposed to light, and at least one energy converting material, preferably a phosphor, capable of producing light when exposed to radiation (typically X-rays). The material is particularly suitable for bonding components at ambient temperature in situations where the bond joint is not accessible to an external light source.
    Type: Application
    Filed: January 18, 2019
    Publication date: May 23, 2019
    Applicant: Immunolight, LLC.
    Inventors: Zakaryae FATHI, James Clayton, Harold Walder, Frederic A. Bourke, JR.
  • Publication number: 20190134419
    Abstract: A system and method for emitting a wavelength of energy internal to a medium or internal to a human or animal subject, and methods for using the system in the treatment of a condition, disorder, or disease. The system includes 1) a source configured to produce an initiation signal penetrating at least a part of the medium or the human or animal subject and 2) an insertion device having an electronics assembly unit. The assembly unit includes 1) an emitter configured to emit the wavelength of energy of a predetermined type to treat a disease or disorder in the human or animal subject or to produce a change in the medium and 2) a receiver that receives the signal.
    Type: Application
    Filed: April 25, 2017
    Publication date: May 9, 2019
    Applicant: Immunolight, LLC
    Inventors: Frederic A. BOURKE JR., Harold WALDER, Zakaryae FATHI, Wayne F. BEYER, JR.
  • Patent number: 10283476
    Abstract: A curable resin or adhesive composition includes at least one monomer, a photoinitiator capable of initiating polymerization of the monomer when exposed to light, and at least one energy converting material, preferably a phosphor, capable of producing light when exposed to radiation (typically X-rays). The material is particularly suitable for bonding components at ambient temperature in situations where the bond joint is not accessible to an external light source.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: May 7, 2019
    Assignee: IMMUNOLIGHT, LLC.
    Inventors: Zakaryae Fathi, James Clayton, Harold Walder, Frederic A. Bourke, Jr.
  • Patent number: 10272262
    Abstract: A system and method for light stimulation within a medium. Products, compositions, systems, and methods for modifying a target structure which mediates or is associated with a biological activity, including treatment of conditions, disorders, or diseases mediated by or associated with a target structure, such as a virus, cell, subcellular structure or extracellular structure. The methods may be performed in situ in a non-invasive manner by application of an initiation energy to a subject thus producing an effect on or change to the target structure directly or via a modulation agent. The methods may further be performed by application of an initiation energy to a subject in situ to activate a pharmaceutical agent directly or via an energy modulation agent, thus producing an effect on or change to the target structure. Kits containing products or compositions formulated or configured and systems for use in practicing these methods.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: April 30, 2019
    Assignee: IMMUNOLIGHT, LLC.
    Inventors: Frederic A. Bourke, Jr., Harold Walder
  • Publication number: 20190100680
    Abstract: A method of and system for adhesive bonding. The method and system a) treat a surface of an element to be bonded to provide an adherent structure including one or more rubber compounds on the surface; b) place a polymerizable adhesive composition, including at least one photoinitiator and at least one energy converting material, in contact with the adherent structure and two or more components to be bonded to form an assembly, c) irradiated the assembly with radiation at a first wavelength, capable of conversion by the at least one energy converting material, to a second wavelength capable of activating the at least one photoinitiator to produce from the polymerizable adhesive composition a cured adhesive composition; and d) adhesively join the two or more components by way of the adherent structure and the cured adhesive composition.
    Type: Application
    Filed: September 4, 2018
    Publication date: April 4, 2019
    Applicant: IMMUNOLIGHT, LLC.
    Inventors: Zakaryae Fathi, Frederic A. Bourke, JR., Harold Walder